Aghanabati, A., 2004. The Geology of Iran. Geological Survey of Iran, Tehran, P. 586. (In Persian).
Berberian, F., Muir, I.D., Pankhurst, R.J., Berberian, M., 1982. Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and Central Iran. Journal of Geology Society London 139, 605-614.
https://doi.org/10.1144/gsjgs.139.5.0605
Barker, A.J., 1990. Interduction to metamorphic textures and microstructures, Blackie and Son Ltd, Glasgow, 170p.
Bell, T.H., Johnson, S.E., 1989. The role of deformation partitioning in the deformation and recrystallization of plagioclase and k-feldespar in the woodroffe thrust mylonite zone, central Australia. Journal of Metamorphic Geology 7, 151-168. http://doi.10.1111/j.1525-1314.1989.tb00582.x
Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O’Reilly, S.Y., Pearson, N.J., 2010. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119(3-4), 457-466.
https://doi.org/ 10.1016 /j.lithos.2010.07.024
Bozkort, E., Park, K.G., 1997. Microstructuraes of deformed grains in the augen gneisses of southern Mederes Massif (Western Turkey) and their tectonic significance. International Journal of Earth Sciences (Geol Rundsch) 86, 103-119. https://doi.org/
10.1007/s005310050125
Bhadra, S.D.S., Bhattacharya, A., 2007. Shear zone-hosted migmatites (Eastern India): the role of dynamic melting in the generation of REE-depleted felsic melts, and implications for disequilibrium melting. Journal of Petrology 48, 435–457.
https://doi.org/10.1093/petrology/egl066
Braud, J., Bellon, H., 1974. Donnes nouvelles sur le domaine metamorphique du Zagros (zone de Sanandaj-Sirjan) au niveau de Kermanshah-Hamadan; nature, age et interpretation des series métamorphiques et des intrusions évolution structural. Faculté des Sciences d'Orsay, Université Paris.
Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology 8, 173-174. https:// doi.org/10. 1046/j.1440-0952.2001.00882.x
Clemens, J.D., Wall, V.J., 1981. Origin and crystallization of some peraluminous (S-type) granitic magmas. Canadian Mineralogist 19, 111-131.
Darvishi, E., Khalili, M, Koksal, S, Koksal, F., Roy, B., 2015.
Geochemistry, Sr-Nd isotope data and petrogenesis of the Marziyan granitoid, Sanandaj–Sirjan Zone, western Iran, Neues Jahrbuch für Mineralogie-Abhandlungen. Journal of Mineralogy and Geochemistry 192: 195-210. https://doi.org/
10.1127/njma/2015/0281
Debone, F., Le Fort, P., 1983. A chemical- mineralogical classification of common plutonic rocks and association. Journal of Petrology 42, 2033-2048. http://dx.doi.org/10.1017/S0263593300010117
Drake, H., Tullborg, E.L., Page, L., 2009. Distinguished multiple events of fracture mineralisation related to far-field orogenic effects in Paleoproterozoic crystalline rocks, Simpevarp area, SE Sweden. Lithos 110(1-4), 37-49. https://doi.org/
10.1016/j.lithos.2008.12.003
Esna-Ashari, A., Hassanzadeh, J., Valizadeh, M.V., 2011. Geochemistry of microgranular enclaves in Aligoodarz Jurassic arc pluton, western Iran: implications for enclave generation by rapid crystallization of cogenetic granitoid magma. Mineralogy and Petrology 101, 195–216.
https://link.springer.com/article/10.1007/s00710-011-0149-7
Esna-Ashari, A., Tiepolo, M., Valizadeh, M.V., Hassanzadeh, J., Sepahi, A. A., 2012. Geochemistry and zircon U-Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan Zone, Iran. Journal of Asian Earth Sciences 43, 11-12.
http://dx.doi.org/10.1016/j.jseaes.2011.09.001
Esna-Ashari, A., Tiepolo, M., Hassanzadeh, J., 2016. On the occurrence and implications of Jurassic primary continental boninite-like melts in the Zagros orogeny. Lithos 258-259, 37-57. https://doi.org/10.1016/j.lithos.2016.04.017
Eveus, B.W., Gutdotti, C.V., 1966. The sillimanite-potash feldspar isograd in western Maine, USA. Conlribution to Mineralogy and Petrology 12, 25-62. https://doi.org/
10.1007/BF02651127
Gerya, T.V., Perchuk, L.L., 1994. A new thermodynamic database for thermobmetry, International Association, 16th General Meeting, Pisa, Italy, Abstracts, 142p.
Ghorbani, M., 2007. Economic geology of natural and mineral resources of Iran, Pars Geological Research Center (arianzamin), P. 492.
Guillot, S., Le Fort, P., 1995. Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos 95, 221-234. https://doi.org/
10.1016/0024-4937(94)00052-4.
Guo, L X., Zhang, Z.Z., Wu, C.Z., Wang, Y.X., Tang, J.H., Wang, C. S., Xi, A.H., Zheng, Y.C., 2006. Some problems on granites and vertical growth of the continental crust in the eastern Tianshan Mountains, NW China. Acta Petrology Sinica 22(5), 1103-1120. http://www.ysxb.ac.cn/en/article/id/aps_200605116
Guo, L.E., Zeng, L.S., Asimow, P.D., 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources, The Himalayan leucogranites: Geology 45, 39–42. https://doi.org/
10.1130/G38336.1
Harris, N.B.W., Inger, S., 1992. Geochemical characteristics of pelite-derived granites. Contribution Mineralogy and Petrology 110, 46-56.
Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism. In: Coward, M.P., Ries, A.C. (Eds.), Collision Tectonics. Journal Geological Society London 19, 67-81.
https://doi.org/10.1144/GSL.SP.1986.019.01.04.
Harris, N., Ayres, M., Massy, J., 1995. Geochemistry of granitic melts produced during the incongruent melting of Muscovite: implications for the geochemistry and extraction of Himalayan leucogranite magmas. Journal Geophysical Research 100, 15777-15787. https:// doi. org /10.1029/94JB02623.
Le Breton, N., Thompson, A.B., 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology 99, 226-237. https://doi.org/10.1007/BF00371463
Lee, M.R., Parsons, I., 1997. Dislocation formation and albitization in alkali feldspars from the Shap granite. American Mineralogist 82, 557-570. https://doi.org/10.2138/am-1997-5-616
Masoudi, F., Yardley, B.W.D., Cliff, R.A., 2002. Rb-Sr geochronology of pegmatites, plutonic rocks and a hornfels in the region south-west of Arak, Iran. Journal of Sciences Islamic Republic of Iran 13, 249-254.
Mazaheri, S.A., Bea, F., Amini, S., Ghalamghash, J., Molina, J.F., Montero, M.P., Scarrow, J., Williams, I.S., 2009. The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogen. Journal of Geological Society 166, 53-69.
https://doi.org/10.1144/0016-76492008-022
Maniar, P.D., Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geology Social American Bulletin 101, 635-643.
Miller, C.F., Stoddard, E.F., 1981. The role of manganese in the paragenesis of magmatic garnet: an example from the Old Woman-Piute Range, California. Journal of Geology 89, 233–246.
https://doi.org/10.1086/628582
Mohajjel, M. Fergusson, C.L., Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj- Sirjan zone, Western Iran. Journal of Asian Earth Sciences 21, 397-412. https://doi. org/10. 1016/ S1367-9120(02)00035-4
Mohajjel, M., Rasoli, A., 2014. Structural evidence for superposition of transtension on transpression in the Zagros collision zone: Main Recent Fault, Piranshahr area, NW Iran. Journal of Structural Geology 62, 65-79. https://doi.org/
10. 1016/j.jsg.2014.01.006
Mahmoudi, S., Corfu, F., Masoudi, F., Mehrabi, B., Mohajjel, M., 2011. U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran. Journal of Asian Earth Sciences 41, 238-249.
https://doi.org/10.1016/j.jseaes.2011.03.006
Moradi A., Shabanian Boroujeni N., Davodian Dehkordi, A.R., 2017. Geochemistry of granitoid pluton in northeastern of mine Jan (province Lorestan). Journal of Economic Geology 1, 191-205. https://doi.org/
10.22067/econg.v9i1.37117
Nabelek, P.I., Liu, M., 2004. Petrologic and thermal constraints on the origin of leucogranites in collisional orogens. Transcurents Royal Society Edinburgh Earth Sciences 95, 73-85.
https://doi.org/10.1017/S026359 330000 0936
Neogi, S., Bolton, E.W., Chakraborty, S., 2014. Timescales of disequilibrium melting in the crust: constraints from modelling the distribution of multiple trace elements and a case study from the Lesser Himalayan rocks of Sikkim. Contributions to Mineralogy and Petrology 168, 1006-1020.
Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956-983.
https://doi.org/10.1093/petrology/25.4.956
Pitcher, W.S., 1983. Granite Type and Tectonic Environment, In: Hsu, K. (Ed.): Mountain Building Processes. Academic Press London, 19-40.
Paul, A., Hatzfeld, D., Kaviani, A.T., atar, M., Pequegnat, C., 2010. Seismic imaging of the lithospheric structure of the Zagros Mountain belt (Iran). Geology Society London 330, 5-18.
Poujol, P., Jaguin, J., Moyen, J.F., Boulvais, P., Paquette, J.L., 2021. Archean S-Type granites: petrology, geochemistry and geochronology of the Lekkersmaak and Willie plutons, Kaapvaal Craton, South Africa. South African Journal of Geology 124 (1), 87-110.
https://doi.org/10.25131/sajg.124.0004
Pupin, J.P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207-220.
Rapp, R.P., Shimizu, N., Norman, M.D., Applegate, G.S., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335-356.
Rudnick, R.L., Guo, S., 2003. The Composition of the Continental Crust. In: Rudnick RL (ed) The Crust, Treatise on Geochemistry 3, 1-64. https://doi.org/
10.1016/B0-08-043751-6/03016-4
Rogers, G., Hawkesworth, C., 1989. A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge. Earth Planet Science Letters 91, 171-185. https://doi.org/
10.1016/0012-821X(89)90003-4
Rogers, J.J.W., Greenberg, J.K., 1990. Late-orogenic, post-orogenic and anorogenic granites: distinction by major-element and trace-element chemistry and possible origins. Journal of Geology 98(3), 291-309. https://doi. org/10.1086/629406
Sahandi, M., Radfar, J., Mohajjel, M., 1985. Geological map of Shazand Area Scale 1:100000, Geological Survey and Mineral Exploration of Iran.
Sajona, F.G., Maury, R., Bellin, H., Cotton, J., Defant, M.J., 1996. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). Journal of Petrology 37, 693-726.
https://doi.org/10.1093/petrology/37.3.693
SepahiGaroo, A.A., Shahbazi, H., Siebel, W., Ranin, A., 2014. Geochronology of plutonic rocks from the Sanandaj-Sirjan zone, Iran and new zircon and titanite U-Th-Pb ages for granitoids from the Marivan pluton. Geochronometria 41, 207-215.
https://doi.org/10.2478/s13386-013-0156-z
Siivola J., Schmid R., 2017. List of mineral abbreviation Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. American Mineralogist, Web version 01.02.07.
Shabanian
Boroujeni, N., Ali Reza Davoudian Dehkordi, A,R., Dong, Y., Liu, X., 2018.
U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites, Sanandaj-Sirjan zone of western Iran. Precambrian Research 306, 41-60.
https://doi.org/10.1016/j.precamres.2017.12.037
Shahbazi, H., Siebel, W., Ghrbani, M., Sepahi, A.A., Shang, C.K., 2015. The Almogholagh pluton, Sanandaj-Sirjan Zone, Iran: geochemistry, U-(Th)-Pb titanite geochronology and implication for its tectonic evolution.
Neues Jahrbuch für Mineralogie Abhandlungen 192 (1), 85-99. https://doi.org/
10.1127/njma/2014/0273
Shakerardakani, F., Neubauer, F., Masoudi, F., Mehrabi, B., Liu, X.m Dong, Y., Mohajjel, M., Monfaredi, B., Friedl, G., 2015. Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud–Azna region (NW Iran): Laser-ablation ICP–MS zircon ages and geochemistry. Tectonophysics 647, 146-171. https://doi.org/
10.1016/j.tecto.2015.02.020
Shand, S.J., 1947. Eruptive Rocks, Thomas Murby and Co., London, 488p.
Shelley, D., 1993. Igneous and metamorphic rocks under the microscope, classificathon, textures, microstructures and mineral preferred-orientathons. Chapman and Hall, London.
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes. In: Saunders, A.D, Norry, M. J. (Eds.): Magmatism in the Ocean Basins. Geology Society of London 42, 313-345.
Swain, G., Barovich, K., Hand, M., Ferris, G., Schwarz, M., 2008. Petrogenesis of the St Peter Suite, southern Australia: arc magmatism and Proterozoic crustal growth of the South Australian Craton. Precambrian Research 166, 283-296. https://doi.org/
10.1016/j.precamres.2007.07.028
Taylor, J., Stevens, G., 2010. Selective entrainment of peritectic garnet into S-type granitic magmas: Evidence from Archaean mid-crustal anatectites. Lithos 120, 277-292. https://doi.org/
10.1016/j.lithos.2010.08.015
Thiele, O., Alavi-Naini, M., Assefi, R., Hushmand- Zadeh, A., Seyed-Emami, K., Zahedi, M., 1968. Explanatory text of the Golpaygan quadrangle map 1:250000, Geological quadrangle N. E7. Geological Survey of Iran, Tehran, Iran.
Thompson, A.B., Tracy, R.J., 1979. Model systems for anatexis of pelitic rocks. II. Facies series melting and reactions in the system CaO-KAlO
2-NaAlO
2-Al
2O
3-SiO
2-H
2O. Contributions to Mineralogy and Petrology 70, 429-438.
https://doi.org/10.1007/BF00371049
Thompson, R.N., Morrison, M.A., Hendry, G.L, Parry, S.J., 1984. An assessment of the relative roles of a crust and mantle in magma genesis: an elemental approach. Philosophical Transactions of the Royal Society of London 310, 549-590. https://doi.org/10.1098/rsta.1984.0008
Vernon, R.H., Paterson, S.R., 2008. How extensive are subsolidus grain-shape changes in cooling granites. Lithos 105, 42-50. https://doi.org/10.1016/j.lithos.2008.02.004
Vielzeuf, D., Schmidt, M.W., 2001. Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contribution Mineralogy and Petrology, 141, 251-267. https://link.springer.com/article/10.1007/s004100100237
Vielzeuf, D., Holloway, J.R., 1988. Experimental determination of the fluid-absent melting relations in the politic system-consequences for crustal differentiation. Contribution to Mineralogy and Petrology 98, 257-276.
Williamson, B.J.,
Shaw, A.,
Downes, H.,
Thirl wall, M.F., 1996. Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France,
Chemical Geology 127, 25-42.
Wilson, B.M., 1989. Igneous Petrogenesis (A Global Tectonic Approach), Unwin Hyman London, 466p.
Zeng, L., Asimow, P.D., Saleeby, J.B., 2005. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochim Cosmochim Acta 69, 3671-3682. https://doi.org/10.1016/j.gca.2005.02.035
Xie, L., Tao, X., Wang, R., Wu, F., Liu, C., Liu, X., Li, X., Zhang, R., 2019. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be–Nb–Ta and hydrothermal Be–W–Sn mineralization. Lithos 354, 354–355, 105286. https://doi.org/
10.1016/j.lithos.2019.105286