Akhundi, H., Ghafoori, M., Lashkaripour, G.R., 2014. Prediction of shear wave velocity using artificial neural network technique. multiple regression and petrophysical data: A case study in Asmari reservoir (SW Iran). Open Journal of Geology 4, 303-313. https://doi: 10.4236/ojg.2014.47023.
Alavi, A.H., Gandomi, A.H., Mollahasani, A., Heshmati, A.A.R., Rashed, A., 2010. Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks. Journal of Plant Nutrition and Soil Science 173, 368–379. https://doi.org/10.1002/jpln.200800233.
Al-Dousari, M., Garrouch, A., Al-Omair, O., 2016. Investigating the dependence of shear wave velocity on petrophysical parameters. Journal of Petroleum Science and Engineering 146, 286-296.
https://doi.org/10.1016/j.petrol.2016.04.036.
Anifowose, F., Abdulraheem, A., 2011. Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization. Journal of Natural Gas Science and Engineering 3, 505-517. https://doi.org/10.1016/j.jngse.2011.05.002.
Asoodeh, M., Bagheripour, P., 2012. Prediction of compressional, shear, and stonely wave velocities from conventional well log data using a committee machine with intelligent systems. Rock Mechanics and Rock Engineering 45, 45–63. https://doi.org/10. 1007/s00603-011-0181-2.
Bagheripour., P., Gholami., A., Asoodeh., M., Vaezzadeh-Asadi., M., 2015. Support vector regression-based determination of shear wave velocity. Journal of Petroleum Science and Engineering 125, 95-99.
https://doi.org/10.1016/j.petrol.2014.11.025.
Behnia, D., Ahangari, K., Moeinossadat, S.R., 2017. Modeling of shear wave velocity in limestone by soft computing methods. International Journal of Mining Science and Technology 27, 423–430.
https://doi.org/10.1016/j.ijmst.2017.03.006.
Bengio, Y., Simard, P., Frasconi, P., 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks. Neural Network 2, 157–166. https://doi.org/10.1109/72.279181.
Bhatt, A., & Helle, H. B., 2002. Committee neural networks for porosity and permeability prediction from well logs. Geophysical Prospecting 50(6), 645-660. https://doi.org/10.1046/j.1365-2478.2002.00346.
Brocher, T.M., 2005. Empirical relations between elastic wave speeds and density in the Earth’s crust. Bulletin of the Seismological Society of America 95, 2081–2092. https://doi.org/10.1785/0120050077.
Castagna, J.P., Batzle, M.L., Eastwood, R.L., 1985. Relationships between compressional wave and shear-wave velocities in clastic silicate rocks. Geophysics 50(4), 571–581. http://dx.doi.org/10.1190/1.1441933.
Coello, C.C., Van Veldhuizen, D.A., Lamont, G.B., 2007. Evolutionary algorithms for solving multiobjective problems. In: Goldberg, E et al. (Eds.), Springer Science & Business Media, Springer New York, pp. 130-441.
Ebrahimi, A., Izadpanahi, A., Ebrahimi, P., Ranjbar, A., 2022. Estimation of shear wave velocity in an Iranian oil reservoir using machine learning methods. Journal of Petroleum Science and Engineering 209, February 2022, 109841.
https://doi.org/10.1016/j.petrol.2021.109841.
Eskandari, H., Rezaee, M.R., Mohammadnia, M., 2004. Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir, South Iran. Open Journal of Geology 4, 42-48.
Gholami Vijouyeh, A., Kadkhodaie, A., Hassanpour Sedghi, M., 2022. A committee machine with intelligent experts (CMIE) for estimation of fast and slow shear wave velocities utilizing petrophysical logs. Computers & Geosciences 165, 105-149. https://doi.org/10.1016/j.cageo.2022.105149.
Gholami, A., Seyedali, S.M., Ansari, H.R., 2020. Estimation of shear wave velocity from post-stack seismic data through committee machine with cuckoo search optimized intelligence models. Journal of Petroleum Science and Engineering 189, https://doi.org/10.1016/j.petrol.2020.106939.
Gholami, R., Moradzadeh, A., Rasouli, V., Hanachi, J., 2014. Shear wave velocity prediction using seismic attributes and well log data. Acta Geophysica 62, 818–848.
https://doi.org/10.2478/s11600-013-0200-7.
Ghorbani, H., Davoodi, S., Davarpanah, A., 2021. Accurate determination of shear wave velocity using LSSVM-GA algorithm based on petrophysical log. European Association of Geoscientists & Engineers, Third EAGE Eastern Mediterranean Workshop 2021, 1 – 3. https://doi.org/10.3997/2214-4609.202137015.
Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., & Schmidhuber, J., 2017. LSTM: A Search Space Odyssey. Ieee Transactions on Neural Networks and Learning Systems 28(10), 2222-2232. https://doi.org/10.1109/TNNLS.2016.2582924.
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahrousy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., Chen, T., 2018. Recent advances in convolutional neural networks. Pattern Recognition 77, 354-377. https://doi:org/10.1016/j.patcog.10.013.
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M. S., 2015. Deep learning for visual understanding: A review. Neurocomputing 187, 27–48, https://doi: 10.1016/j.neucom.2015.09.116.
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput 9(8), 1735–1780.
Huang, Y., Gedeon, T.D., & Wong, P.M., 2001. An integrated neural-fuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs. Engineering Applications of Artificial Intelligence 14(1), 15-21. https://doi.org/10.1016/S0952-1976(00)00048-8.
Kadkhodaie-Ilkhchi, A., 2015. A systematic approach for estimation of reservoir rock properties using Ant Colony Optimization. Geopersia 5, 7-17. https://doi.org/10.7508/GEOP.2015.01.002.
Kuo, P., Huang, C., 2018. An electricity price forecasting model by hybrid structured deep neural networks. Sustainability 10, 1280. https://doi.org/10.3390/su10041280.
Lecun, Y. Bottou, L. Bengio, L. and Haffner, P., 1998. Gradient -based learning applied to document recognition, Proceedings of the IEEE 86(11), 2278 –2324. https://doi.org/10.1109/5.72679.
Maleki, Sh., Moradzadeh, A., Ghavami Riabi, R., Gholami, R., Sadeghzadeh, F., 2014. Prediction of shear wave velocity using empirical correlations and artificial intelligence methods. NRIAG Journal Astron Geophysics 3, 70–81.
https://doi.org/10.1016/j.nrjag.2014.05.001.
Mehrgini, B., Izadi, H., Memarian, H., 2019. Shear wave velocity prediction using Elman artificial neural network. Carbonates Evaporites 34(4), 1281–1291. https://doi.org/10.1007/s13146-017-0406.
Moatazedian, I., Rahimpour-Bonab, H., Kadkhodaie-Ilkhchi, A., & Rajoli, M., 2011. Prediction of shear and Compressional Wave Velocities from petrophysical data utilizing genetic algorithms technique: A case study in Hendijan and Abuzar fields located in Persian Gulf. Geopersia 1(1), 1-17. https://doi.org/10.22059/jgeope.2011.22161.
Motiei, H., 2009. Petroleum geology of the Persian Gulf. Tehran University Press. P. 707.
Nasrnia, B., Falahat, R., Kadkhodaie, A., Gholami Vijouyeh, A., 2023. A committee machine-based estimation of shear velocity log by combining intelligent systems and rock-physics model using metaheuristic algorithms 126, Part A, November 2023, 106821. https://doi.org/10.1016/j.engappai.2023.106821.
Pickett, GR., 1963. Acoustic character logs and their applications in formation evaluation. Journal of Petroleum Technology 15, 659–667. https://doi. org/10.2118/452-PA.
Rajabi, M., Bohloli, B., Gholampour Ahangar, E., 2010. Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran). Computers & Geosciences 36, 647–664.
https://doi.org/10.1016/j.cageo.2009.09.008.
Rezaee, MR., Kadkhodaei, A., Barabadi, A., 2007. Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia. Journal of Petroleum Science and Engineering 55, 201–212.
https://doi.org/10.1016/j.petrol.2006.08.008.
Sherkati, S., Letouzey, J., 2004. Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embyment), Iran: Marine and Petroleum Geology 21, 535-554. https://doi.org/10.1016/j.marpetgeo.2004.01.007.
Wong, P.M. and Nikravesh M., 2001. Field applications of intelligent computing techniques: Journal of petroleum geology 24(4), 381-387. https://doi.org/10.1111/j.1747-5457. 2001.tb00681. x.
Yoo, H.J., 2015. Deep Convolution Neural Networks in Computer Vision: A Review. IEIE Transactions on Smart Processing and Computing 4, 35 –43. https://doi.org/10.5573/IEIESPC.2015.4.1.035.
Zeiler, M.D., Fergus, R., 2014. Visualizing and Understanding Convolutional Networks. In: Fleet. D et al. (Eds.), Springer International Publishing Switzerland., New York University, PP. 818-833.
Zhang, Y., Zhong, H.R., Wu, Z., Zhou, H., Ma, Q., 2020. Improvement of petrophysical workflow for shear wave velocity prediction based on machine learning methods for complex carbonate reservoirs. Journal of Petroleum Science and Engineering 192, 107234. https://doi.org/10.1016/j.petrol.2020.107234.