Estimation of Shear Wave Velocity in one Iranian Hydrocarbon Reservoir Using Conventional Well logs and a New Intelligence Method

Authors

Department of Mining Engineering, Arak University of Technology, Iran

Abstract

          Determination of shear wave velocity (Vs) by methods such as core analysis is time-consuming and costly. Also due to lack of sufficient core, lithology changes and heterogeneity of reservoir rock, did not have accurate determination by traditional methods. It also has plenty of empirical relationships is presented in the Vs, But in most cases it can be desirable to use this relationship in different areas. Intelligent methods using petrophysical reservoir predicted Vs in the shortest possible time. In this study, Vs was predicted from well logs data using support vector regression algorithm-based teaching and learning method in one Iranian hydrocarbon reservoir (Maroon Square). For this purpose, a total of 3800 data points were utilized. These  data were divided into two parts, one part included 3040 data points used for training models and the other part included 760 data points used for testing model. After modeling of  results data show that a new intelligence techniques were useful methods for prediction of Vs in reservoirs that this parameter has not been measured.
 

Keywords


احمدی،ر.، امیری بختیار، م.ص.، 1395، ارزیابی خواص پتروفیزیکی سازند آسماری میدان نفتی بزرگ مارون واقع در جنوب غرب کشور با استفاده از نگارهای چاه پیمایی، مجله زمین‌شناسی کاربردی پیشرفته، شماره 19، ص 22-10.
رضایی،ر.، زارعی محمودآبادی، ه.، کلانتری، ن.، علی یاری،ز.، 1395، بررسی کیفیت آب مخزن سد مارون با استفاده از روش تحلیل آماری چند متغیره بر پایه همبستگی و تغییرات داده‌های کیفی آب، بهبهان، خوزستان، مجله زمین‌شناسی کاربردی پیشرفته، شماره 19، ص 85-82.
Ahmadi M.-A., Ahmadi M.R., Hosseini S.M., Ebadi M., 2014a, Connectionist model predicts the porosity and permeability of petroleum reservoirs by means of petro-physical logs: Application of artificial intelligence. Journal of Petroleum Science and Engineering, Vol: 123, P: 183-200.
Ahmadi M.A., Ebadi M., Marghmaleki P.S., Fouladi M.M., 2014b, Evolving predictive model to determine condensate-to-gas ratio in retrograded condensate gas reservoirs. Fuel, Vol: 124, P: 241-257.   
Al-Anazi A., Gates I., 2010, Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study. Computers & Geosciences, Vol: 36, No:12, P: 1494-1503. 
Anifowose F., Abdulraheem A., 2011, Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization. Journal of Natural Gas Science and Engineering, Vol: 3, No:3, P: 505-517.    
Anifowose F., Labadin J., Abdulraheem A., 2015, Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines. Applied Soft Computing, Vol: 26, P: 483-496.          
Anifowose F.A., Labadin J., Abdulraheem A., 2013, Prediction of petroleum reservoir properties using different versions of adaptive neuro-fuzzy inference system hybrid models. Int. J. Comput. Inf. Syst. Ind. Manage. Appl, Vol: 5, P: 413-426.
Ansari H.R., 2014, Use seismic colored inversion and power law committee machine based on imperial competitive algorithm for improving porosity prediction in a heterogeneous reservoir. Journal of Applied Geophysics, Vol: 108, P: 61-68.    
Ansari H.R., Gholami A., 2015, An improved support vector regression model for estimation of saturation pressure of crude oils. Fluid Phase Equilibria, Vol: 402, P:124-132.    
Asoodeh M., Bagheripour P., 2012, Prediction of compressional, shear, and stoneley wave velocities from conventional well log data using a committee machine with intelligent systems. Rock mechanics and rock engineering, Vol: 45, No:1, P: 45-63.    
Bagheripour P., Gholami A., Asoodeh M., Vaezzadeh-Asadi M., 2015, Support vector regression based determination of shear wave velocity. Journal of Petroleum Science and Engineering, Vol: 125, P: 95-99.  
Basak D., Pal S., Patranabis D.C., 2007, Support vector regression. Neural Information Processing-Letters and Reviews, Vol: 11, No:10, P: 203-224.        
Baziar S., Gafoori M.M., Pour M., Mehdi S., Bidhendi M.N., Hajiani R., 2015, Toward a Thorough Approach to Predicting Klinkenberg Permeability in a Tight Gas Reservoir: A Comparative Study. Iranian Journal of Oil & Gas Science and Technology, Vol: 4, No:3, P: 18-36.             
Baziar S., Tadayoni M., Nabi-Bidhendi M., Khalili M., 2014, Prediction of permeability in a tight gas reservoir by using three soft computing approaches: A comparative study. Journal of Natural Gas Science and Engineering, Vol: 21, P: 718-724.
Boadu F.K., 2001, Predicting oil saturation from velocities using petrophysical models and artificial neural networks. Journal of Petroleum Science and Engineering, Vol: 30, No:3, P: 143-154.            
Cherkassky V., Ma Y., 2004, Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, Vol: 17, No:1, P: 113-126.         
Eskandari H., Rezaee M., Mohammadnia M., 2004, Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran. CSEG recorder, Vol: 42, P: 48.        
Fattahi H., 2016, Application of improved support vector regression model for prediction of deformation modulus of a rock mass. Engineering with Computers, P: 1-14.      
Gholami R., Moradzadeh A., 2012, Support vector regression for prediction of gas reservoirs permeability. Journal of Mining and Environment, Vol: 2, No:1, P: 1-14.         
Helle H.B., Bhatt A., Ursin B., 2001, Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study. Geophysical Prospecting, Vol: 49, No:4, P: 431-444.      
Kadkhodaie-Ilkhchi A., Rezaee M.R., Rahimpour-Bonab H., Chehrazi A., 2009, Petrophysical data prediction from seismic attributes using committee fuzzy inference system. Computers & Geosciences, Vol: 35, No:12, P: 2314-2330.       
Kadkhodaie Ilkhchi A., Rezaee M., Moallemi S.A., 2006, A fuzzy logic approach for estimation of permeability and rock type from conventional well log data: an example from the Kangan reservoir in the Iran Offshore Gas Field. Journal of Geophysics and Engineering, Vol: 3, P: 356-369.
Lancaster S., Whitcombe D. (2000). Fast track coloured inversion, SEG.               
Moatazedian I., Rahimpour-Bonab H., Kadkhodaie-Ilkhchi A., Rajoli M., 2011, Prediction of shear and Compressional Wave Velocities from petrophysical data utilizing genetic algorithms technique: A case study in Hendijan and Abuzar fields located in Persian Gulf. Geopersia, Vol: 1, No:1, P: 1-17.               
Nazari S., Kuzma H.A., Rector Iii J.W. (2011). Predicting permeability from well log data and core measurements using support vector machines. 2011 SEG Annual Meeting, Society of Exploration Geophysicists.
Nouri Taleghani M., Saffarzadeh S., Karimi Khaledi M., Zargar G., 2013, Development of an Intelligent System to Synthesize Petrophysical Well Logs. Iranian Journal of Oil & Gas Science and Technology, Vol: 2, No:3, P: 11-24.
Rajabi M., Bohloli B., Ahangar E.G., 2010, Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran). Computers & Geosciences, Vol: 36, No:5, P: 647-664.
Rao R.V., Savsani V.J., Vakharia D., 2012, Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Information Sciences, Vol: 183, No:1, P: 1-15.
Rezaee M.R., Ilkhchi A.K., Barabadi A., 2007a, Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia. Journal of Petroleum Science and Engineering, Vol: 55, No:3, P: 201-212.
Rezaee M.R., Kadkhodaie-Ilkhchi A., Alizadeh P.M., 2007b, Intelligent approaches for the synthesis of petrophysical logs. Journal of Geophysics and Engineering, Vol: 5, No:1, P: 12.
Sebtosheikh M.A., Motafakkerfard R., Riahi M.-A., Moradi S., Sabety N., 2015, Support vector machine method, a new technique for lithology prediction in an Iranian heterogeneous carbonate reservoir using petrophysical well logs. Carbonates and Evaporites, Vol: 30, No:1, P: 59-68.
Vapnik V.N., Vapnik V. (1998). Statistical learning theory, Wiley New York.
Yue Y., Wang J., 2007, SVM method for predicting the thickness of sandstone. Applied Geophysics, Vol: 4, No:4, P: 276-281.
Zoveidavianpoor M., Samsuri A., Shadizadeh S.R., 2013, Adaptive neuro fuzzy inference system for compressional wave velocity prediction in a carbonate reservoir. Journal of Applied Geophysics, Vol: 89, P: 96-107.