Assessment of pollution, and determining potential sources of polycyclic aromatic hydrocarbons (PAHs) in street dust of Kermanshah Metropolis

Authors

1 Department of applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran-Iran

2 Department of Applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran-Iran

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic pollutants composed of two or more benzene rings. These compounds have attracted widespread attention due to their high carcinogenicity and mutagenicity in humans. In this study, 21 street dust samples were collected from various land uses in Kermanshah to investigate pollution and potential sources of PAHs. The samples were analyzed using gas chromatography-mass spectrometer (ICP-MS) after preparation. Also, in order to accurate identification of pollution sources, isomeric ratios were used. The results showed that all 16 PAH compounds identified by the United States Environmental Protection Agency (USEPA) as dangerous carcinogenic compounds are present in the street dust of Kermanshah metropolis. The concentration of total PAHs varies from 22.8 to 2820.98 μg / kg dry weight, with an average concentration of 1140.79 μg / kg. In addition, the toxic equivalency quotient (TEQ) in street dust samples of Kermanshah metropolis ranges from 18.54 μg / kg to 196.64 μg / kg, indicating the difference in concentration and toxicity of these compounds in different parts of the city. The results also show that the potential risk of carcinogenicity in adults and children through dermal contact is greater than direct ingestion and respiration pathways. In general, considering the isomeric ratios and principal component analysis, the combustion of fossil fuels, oil products and emissions from vehicles and traffic are the most important sources of PAHs in Kermanshah metropolis.

Keywords


Amjadian, K., Pirouei, M., Rastegari Mehr, M., Shakeri, A., Rasool, S. K., Haji, D.I., 2018. Contamination, health risk, mineralogical and morphological status of street dusts-case study: Erbil metropolis, Kurdistan Region-Iraq. Environmental Pollution 243, 1568-1578. https://doi.org/10.1016/j.envpol.2018.09.116.
Boonyatumanond, R., Murakami, M., Wattayakorn, G., Togo, A., Takada, H., 2007. Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Science of the Total Environment 384(1-3), 420-432. https://doi.org/10.1016/j.scitotenv.2007.06.046.
Bucheli, T.D., Blum, F., Desaules, A., Gustafsson, Ö., 2004. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56(11), 1061-1076. https://doi.org/10.1016/j.chemosphere.2004.06.002.
Butler, J.D., Crossley, P., 1981. Reactivity of polycyclic aromatic hydrocarbons adsorbed on soot particles. Atmospheric Environment 15(1), 91-94. https://doi.org/10.1016/S0021-8502(00)91041-3.
Cao, Z.G., Yu, G., Chen, Y.S., Cao, Q.M., Fiedler, H., Deng, S.B., Wang, B., 2012. Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environment International 49, 24-30. https://doi.org/10.1016/j.envint.2012.08.010.
Dong, T.T., Lee, B.K., 2009. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 74(9), 1245-1253. https://doi.org/10.1016/j.chemosphere.2008.11.035.
Essumang, D.K., Kowalski, K., Sogaard, E.G., 2011. Levels, distribution and source characterization of polycyclic aromatic hydrocarbons (PAHs) in topsoils and roadside soils in Esbjerg, Denmark. Bulletin of Environmental Contamination and Toxicology 86(4), 438-443. https://doi.org/10.1007/s00128-011-0232-0.
Ferreira-Baptista, L., De Miguel, E., 2005. Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmospheric Environment 39 (25), 4501 - 4512. https://doi.org/10.1016/j.atmosenv.2005.03.026.
Ghanavati, N., 2018. Human health risk assessment of heavy metals in street dust in Abadan. Iranian Journal of Health and Environment 11(1), 63-74.
Guo, H., Lee, S.C., Ho, K.F., Wang, X.M., Zou, S.C., 2003. Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment 37(38), 5307-5317. https://doi.org/10.1016/j.atmosenv.2003.09.011.
Halek, F., Nabi, G., Kavousi, A., 2008. Polycyclic aromatic hydrocarbons study and toxic equivalency factor (TEFs) in Tehran, IRAN. Environmental Monitoring and Assessment 143(1-3), 303-311. https://doi.org/10.1007/s10661-007-9983-9.
Hassan, S.K., Khoder, M.I., 2012. Gas–particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt. Environmental Monitoring and Assessment 184(6), 3593-3612. https://doi.org/10.1007/s10661-011-2210-8.
IMO (Iran Meteorological Organization), 2019. Portal of County.https://www.irimo.ir/eng/index.php.
Irvine, K.N., Loganathan, B.G., 1998. Localized enrichment of PCB levels in street dust due to redistribution by wind. Water, Air, and Soil Pollution 105(3-4), 603-615. https://doi.org/10.1023/A:1004941308921.
Keshavarzi, B., Tazarvi, Z., Rajabzadeh, M.A., Najmeddin, A., 2015. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmospheric Environment 119, 1-10. https://doi.org/10.1016/j.atmosenv.2015.08.001.
Kim, H.S., Weber, W.J., 2005. Optimizing contaminant desorption and bioavailability in dense slurry systems. 2. PAH bioavailability and rates of degradation. Environmental Science & Technology 39(7), 2274-2279. https://doi.org/10.1021/es049564j.
Knafla, A., Phillipps, K.A., Brecher, R.W., Petrovic, S., Richardson, M., 2006. Development of a dermal cancer slope factor for benzo [a] pyrene. Regulatory Toxicology and Pharmacology 45(2), 159-168. https://doi.org/10.1016/j.yrtph.2006.02.008.
Krein, A., Udelhoven, T., Audinot, J.N., Hissler, C., Guignard, C., Pfister, L., Hoffmann, L., 2008. Imaging chemical patches on near-surface atmospheric dust particles with NanoSIMS 50 to identify material sources. Water, Air, & Soil Pollution: Focus 8(5-6), 495-503. https://doi.org/10.1007/s11267-008-9182-x.
Li, J., Zhang, G., Li, X.D., Qi, S.H., Liu, G.Q., Peng, X.Z., 2006. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Science of the Total Environment 355(1-3), 145-155. https://doi.org/10.1016/j.scitotenv.2005.02.042.
Liu, M., Cheng, S.B., Ou, D.N., Hou, L.J., Gao, L., Wang, L.L., Xu, S.Y., 2007. Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmospheric Environment 41(38), 8785-8795. https://doi.org/10.1016/j.atmosenv.2007.07.059.
Long, Y., Dai, T., Wu, Q., 2013. Sources and distribution of polycyclic aromatic hydrocarbons in street dust from the Chang-Zhu-Tan Region, Hunan, China. Environmental Monitoring and Assessment 185(2), 1377-1390. https://doi.org/10.1007/s10661-012-2639-4.
Magi, E., Bianco, R., Ianni, C., Di Carro, M., 2002. Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environmental Pollution 119(1), 91-98. https://doi.org/10.1016/s0269-7491(01)00321-9.
Mai, B., Qi, S., Zeng, E.Y., Yang, Q., Zhang, G., Fu, J., Wang, Z., 2003. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: assessment of input sources and transport pathways using compositional analysis. Environmental Science & Technology 37(21), 4855-4863. https://doi.org/10.1021/es034514k.
Masclet, P., Mouvier, G., & Nikolaou, K., 1986. Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmospheric Environment 20(3), 439-446. https://doi.org/10.1016/0004-6981(86)90083-1.
Mousavi S, Shakeri A, Nakhaei M., 2017. Contamination, source apportionment and health risk assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in soils of Bandar Abbas county central district. Iranian Journal of Health and Environment 10 (2), 271-280.
Nisbet, I.C., Lagoy, P.K., 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 16(3), 290-300. https://doi.org/10.1016/0273-2300(92)90009-x.
Oliveira, P.L., de Figueiredo, B.R., Cardoso, A.A., 2011. Atmospheric pollutants in São Paulo state, Brazil and effects on human health–a review. Geochimica Brasiliensis 25(1), 17-24 https://dx.doi.org/10.21715/gb.v25i1.328
Pearce, N., Blair, A., Vineis, P., Ahrens, W., Andersen, A., Anto, J.M., Zahm, S.H., 2015. IARC monographs: 40 years of evaluating carcinogenic hazards to humans. Environmental Health Perspectives 123(6), 507-514. https://doi.org/10.1289/ehp.1409149.
Peng, C., Chen, W., Liao, X., Wang, M., Ouyang, Z., Jiao, W., Bai, Y., 2011. Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environmental Pollution 159(3), 802-808. https://doi.org/10.1016/j.envpol.2010.11.003.
Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y., Ternes, T.A., Hofmann, T., 2008. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72(10), 1594-1601. https://doi.org/10.1016/j.chemosphere.2008.04.021.
Qiao, M., Wang, C., Huang, S., Wang, D., Wang, Z., 2006. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environment International 32(1), 28-33. https://doi.org/10.1016/j.envint.2005.04.005.
Rahmanpoor, S., Ghafourian, H., Hashtroudi, S.M., Rabani, M., Mehdinia, A., Darvish Bastami, K., Azimi, A., 2012. The Study of Polycyclic Aromatic Hydrocarbons (PAHs) Contamination in Sediments of Hormoz Straight-Persian Gulf. Journal of Oceanography 3(10), 37-44.
Rastegari Mehr, M., Keshavarzi, B., Moore, F., Sacchi, E., Lahijanzadeh, A. R., Eydivand, S., Rostami, S., 2016. Contamination level and human health hazard assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust deposited in Mahshahr, southwest of Iran. Human and Ecological Risk Assessment: An International Journal 22(8), 1726-1748. https://doi.org/10.1080/10807039.2016.1219221.
Saeedi, M., Li, L.Y., Salmanzadeh, M., 2012. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials 227, 9-17. https://doi.org/10.1016/j.jhazmat.2012.04.047.
SCI (Statistical Center of Iran), 2020. https://www.amar.org.ir
Soclo, H.H., Budzinski, H., Garrigues, P., Matsuzawa, S., 2008. Biota accumulation of polycyclic aromatic hydrocarbons in Benin coastal waters. Polycyclic Aromatic Compounds 28(2), 112-127. https://doi.org/10.1080/10406630801940530.
Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A. R., Jaafarzadeh, N., Kermani, M., 2015. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment 505, 712-723. https://doi.org/10.1016/j.scitotenv.2014.09.097
USEPA (US Environmental Protection Agency), 2001. Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft). US Environmental Protection Agency, Washington, DC.
USEPA (US Environmental Protection Agency), 2011. Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Office of Research and Development, Washington, DC 20460, EPA/600/R-09/052F.
Van den Berg, R., 1995. Human exposure to soil contamination: A qualitative and quantitative analysis towards proposals for human toxicological intervention values, RIVM Report no. 725201011. National Institute of Public Health and Environmental Protection (RIVM). Bilthoven, Netherlands.
Wang, L., Xu, X., Lu, X., 2016. Composition, source and potential risk of polycyclic aromatic hydrocarbons (PAHs) in vegetable soil from the suburbs of Xianyang City, Northwest China: a case study. Environmental Earth Sciences 75(1), 1-13. https://doi.org/10.1007/s12665-015-4853-1
Yuan, G.L., Wu, H.Z., Fu, S., Han, P., Lang, X.X. 2014. Persistent organic pollutants (POPs) in the topsoil of typical urban renewal area in Beijing, China: status, sources and potential risk. Journal of Geochemical Exploration 138, 94-103. https://doi.org/10.1016/j.gexplo.2014.01.001.
Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D., Sylvestre, S., 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33(4), 489-515. https://doi.org/10.1016/S0146-6380(02)00002-5.