Identification of hidden mineral deposits using airborne magnetic data in the Malayer-Esfahan metallogenic belt (MEMB), Iran


1 Master Graduate, School of Geology, University of Tehran, Tehran, Iran

2 Ph.D. Student of Economic Geology, School of Geology, University of Tehran, Tehran, Iran

3 Department of Geology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

4 Department of Geography, Islamic Azad University, Tehran, Iran


The Malayer-Esfahan metallogenic belt hosts large deposits of Zn-Pb with sedimentary host rocks. In addition to Zn-Pb mineralization, Cu, Cr, Au, Fe, Mn, W have been mineralized in this area with different host rocks. In the present study, using airborne magnetic data, promising mineral areas in Malayer-Esfahan metallogenic zone have been introduced. Using reduction to pole (RTP) filters, signal analytical and vertical derivative were processed and airborne magnetic data were interpreted. The map derived from the vertical derivative is considered as the final map to identify anomalies resulting from airborne magnetic data. Due to the sedimentary nature of the Malayer-Esfahan area and the fact that the minerals in the rocks of this area usually have low magnetic properties, the anomalies obtained from the airborne magnetic data showed a relative overlap with some the Zn-Pb deposits in the area; According to this case, the anomalies obtained in this study can be used to identify iron reserves other than Zn-Pb in this area. Anomalies resulting from the vertical derivative filter with iron deposits more than Zn-Pb deposits such as Shams-Abad and Akhtarchi Fe deposits, Astaneh and Muteh Au deposits, Rousht W deposit, Ghaleh-Arab Cu deposit, Ahangaran Zn-Pb deposits, Saleh-Payghambar, Ab-Bagh, Dardahaneh, Khan-Abad, Lakan and etc show overlap. In general, the results of this study showed that in the northwestern, central, and southeastern parts of the Malayer-Esfahan metallogenic zone, there are areas as new and hidden anomalies that can be used for sampling of promising mineral areas by sampling and spectroscopy.


Ahmadi Khalaji, A., Valizadeh, M., W., Ismaili, D., 2007. Petrology and geochemistry of Boroujerd granitoid massif (western Iran). Journal of Science, University of Tehran 1, 1104-1016.
Asgari, A., 2008. Astrology of Astana granitoid mass and its comparison with adjacent igneous masses, Ph.D Thesis, Islamic Azad University, Research Sciences Branch.
Baniamerian, J., Oskooi, B., Imani, P., 2012. The analytic signal and derivatives of the fractional orders for potential fields (applications in processing and interpretation). Iranian Journal of Geophysics 6, 1-16.
Bishop, J. R., Lewis, R.J.G., 1992. Geophysical signatures of Australian volcanic-hosted massive sulfide deposits. Economic Geology 87, 913-930.
Blakely, R.J., Simpson, R.W., 1986. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51, 1494-1498.
Blakely, R. J., 1996. Potential theory in gravity and magnetic applications. Cambridge university press.
Chander, G., Markham, B. L., Helder, D. L., 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113, 893-903.
Clark, D. A., 1997. Magnetite petrophysics and magnetite petrology: aids to geological interpretation of magnetic surveys. AGSO Journal of Australian Geology and Geophysics, 17, 83-103.
Clark, D. A., 1999. Magnetic petrology of igneous intrusions: implications for exploration and magnetic interpretation. Exploration Geophysics 30, 5-26.
Cooper, G.R., Cowan, D.R., 2008. Edge enhancement of potential-field data using normalized statistics. Geophysics 73, H1-H4.
de Castro, D. L., Fuck, R. A., Phillips, J. D., Vidotti, R. M., Bezerra, F. H., Dantas, E. L., 2014. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil. Tectonophysics 614, 128-145.
Dobrin, M. B., Savit, C. H., 1988. Introduction to geophysical prospecting (Vol. 4), New York: McGraw-hill.
Ehya, F., Lotfi, M., Rasa, I., 2010. Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study. Journal of Asian Earth Sciences 37, 186-194.
Ekwok, S. E., Akpan, A. E., Ebong, E. D., 2019. Enhancement and modelling of aeromagnetic data of some inland basins, southeastern Nigeria. Journal of African Earth Sciences 155, 43-53.
Ekwok, S. E., Akpan, A. E., Kudamnya, E. A., 2020. Exploratory mapping of structures controlling mineralization in Southeast Nigeria using high resolution airborne magnetic data. Journal of African Earth Sciences 162, 103700.
Eldosouky, A. M., Elkhateeb, S. O., 2018. Texture analysis of aeromagnetic data for enhancing geologic features using co-occurrence matrices in Elallaqi area, South Eastern Desert of Egypt. NRIAG Journal of Astronomy and Geophysics 7, 155-161.
Eldosouky, A. M., 2019. Aeromagnetic data for mapping geologic contacts at Samr El-Qaa area, North Eastern Desert, Egypt. Arabian Journal of Geosciences 12, 2.
Ferreira, F. J., de Souza, J., de B. E S. Bongiolo, A., de Castro, L. G., 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics 78, J33-J41.
Ghaderi, M., Fardin Doust, Z., Herin, J., 2005. Study of rare earth elements in the tungsten deposits scheelite of southwest of Arak threshold. Iranian Journal of Crystallography and Mineralogy 13, 29-42.
Ganiyu, S. A., Badmus, B. S., Awoyemi, M. O., Akinyemi, O. D., Olurin, O. T., 2013. Upward continuation and reduction to pole process on aeromagnetic data of Ibadan Area, South-Western Nigeria. Earth Science Research 2(1), 66.
Gunn, P. J., 1996. Workshop Interpretation of aeromagnetic data. AGSO Journal of Australian Geology and Geophysics.
Gunn, P. J., Maidment, D., Milligan, P. R., 1997. Interpreting aeromagnetic data in areas of limited outcrop. AGSO Journal of Australian Geology and Geophysics 17, 175-186.
Hosseini-Dinani, H., Aftabi, A., 2016. Vertical lithogeochemical halos and zoning vectors at Goushfil Zn–Pb deposit, Irankuh district, southwestern Isfahan, Iran: Implications for concealed ore exploration and genetic models. Ore Geology Reviews 72, 1004-1021.
Jafari, M.A., Nzarpour, A., Kananian, A., 2020. Comparison accuracy of Fuzzy-GAMMA and analytical hierarchy process (AHP) two methods with the potential detection of Cu metal in Malayer-Aligoudarz-Esfahan metallogenic zone. Advanced Applied Geology 10, 314-327.
Kamkar Rouhani, A., Beiki, M., 2009. Processing and interpretation of airborne magnetic data for prospecting chromite deposits in the Sabzevar area. Journal of the Earth and Space Physics, 35(3).
Khalaji, A. A., Esmaeily, D., Valizadeh, M. V., Rahimpour-Bonab, H., 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences 29, 859-877.
Kouhestani, H., Rashidnejad-Omran, N., Rastad, E., Mohajjel, M., Goldfarb, R. J., Ghaderi, M., 2014. Orogenic gold mineralization at the Chah Bagh deposit, Muteh gold district, Iran. Journal of Asian Earth Sciences 91, 89-106.
Kwan, K., Johnson, I., Legault, J. M., Khaled, K., 2019. Mineralisation predictive targeting using TensorFlow (Google) deep neural networks. ASEG Extended Abstracts, pp. 1-5.
Leach, D. L., Bradley, D., Lewchuk, M. T., Symons, D. T., de Marsily, G., Brannon, J., 2001. Mississippi Valley-type lead–zinc deposits through geological time: implications from recent age-dating research. Mineralium Deposita 36, 711-740.
Mojarad, S., Nejati kalate, A., Aghajani, H., 2019. Mineralization potential and integration of airborne magnetometric geophysical data data and EO-1, ASTER ester and Landsat-7 ETM+ hyperspectral satellite data (Sheet 1: 100,000 Meshkinshahr). Iranian Journal of Remote Sensing & GIS 11(3), 113-142.
Mojarad, S., 2020. Iron Ore Potential Mapping Using Remote Sensing and Magnetometric Geophysical Surveys in Northeast of Neyriz, Fars Province. Journal of Mineral Resources Engineering 5(1), 1-20.
Miller, H. G., Singh, V., 1994. Potential field tilt—a new concept for location of potential field sources. Journal of Applied Geophysics 32, 213-217.
Milligan, P.R., Gunn, P.J., 1997. Enhancement and presentation of airborne geophysical data. AGSO Journal of Australian Geology and Geophysics 17, 63-75.
Mohajjel, M., Fergusson, C. L., Sahandi, M. R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences 21, 397-412.
Momenzadeh, M., 1976. Stratabound lead–zinc ores in the Lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west central Iran), lithology, metal content, zonation and genesis. Heidelberg, University of Heidelberg, 300.
Momenzadeh, M., Shafighi, S., Rastad, E., Amstutz, G.C., 1979. The Āhangarān lead-silver deposit, SE-Malāyer, West Central Iran. Mineralium Deposita 14, 323-341.
Nasri, .S., Nejati Kalateh, A., Roshandel Kahoo, A., Soleimani Monfared, M., 2020. New insights into the structural model of the Makran subduction zone by fusion of 3D inverted geophysical models. Journal of Asian Earth Sciences 188, 104075.
Neawsuparp, K., Charusiri, P., Meyers, J., 2005. New processing of airborne magnetic and electromagnetic data and interpretation for subsurface structures in the Loei area. Northeastern Thailand: ScienceAsia 31, 283-298.
Pedersen, L.B., 1977. Interpretation of potential Field data a Generalized Inverse APPROACH. Geophysical Prospecting 25, 199-230.
Rajabi, A., Mahmoodi, P., Rastad, E., Niroomand, S., Canet, C., Alfonso, P., Yarmohammadi, A., 2019. Comments on “Dehydration of hot oceanic slab at depth 30–50 km: Key to formation of Irankuh-Emarat Pb-Zn MVT belt, Central Iran” by Mohammad Hassan Karimpour and Martiya Sadeghi. Journal of Geochemical Exploration 205, 106346.
Rajabi, A., Rastad, E., Canet, C., 2013. Metallogeny of Permian–Triassic carbonate-hosted Zn–Pb and F deposits of Iran: a review for future mineral exploration. Australian Journal of Earth Sciences 60, 197-216.
Sehsah, H., Eldosouky, A. M., El Afandy, A. H., 2019. Unpaired ophiolite belts in the Neoproterozoic Allaqi-Heiani Suture, the Arabian-Nubian Shield: Evidences from magnetic data. Journal of African Earth Sciences 156, 26-34.
Siemon, B., 2001. Improved and new resistivity-depth profiles for helicopter electromagnetic data. Journal of Applied Geophysics 46, 65-76.
Telford, W.M., Telford, W. M., Geldart, L. P., Sheriff, R. E., Sheriff, R. E., 1990. Applied geophysics. Cambridge University Press.
Valizadeh, M., Ghasemi, H., 1993. Petrogenesis of Buin-Miandasht granitoid massif, southeast of Aligudarz. Journal of Geoscience 7, 83-74.
Wijns, C., Perez, C., Kowalczyk, P., 2005. Theta map: Edge detection in magnetic data. Geophysics 70, 39-43.
Wilson, G.A., Fraser, S., Cox Leif, H., Cuma, M., Zhdanov, M., Vallee, M.A., 2011. Lithological Classification of large-scale 3D inversion of airborne electromagnetic, gravity gradiometry, and magnetic data – A case study from Reid-Mahaffy. Ontario, SEG San Antonio 2011 Annual Meeting, 624-628.
Yarmohammadi, A., Rastad, E., Rajabi, A., 2016. Geochemistry, fluid inclusion study and genesis of the sediment-hosted Zn-Pb (±Ag±Cu) deposits of the Tiran basin, NW of Esfahan, Iran. Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry 193, 183-203.