بررسی تیپ و ژنز کانه‌زایی فلزات پایه در کانسار زاجکان (طارم سفلی، استان قزوین) با استفاده از داده‌های زمین‌شناسی، زمین‌شیمی و میان‌بارهای سیال

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان

چکیده

کانه‌زایی در کانسار زاجکان به‌صورت رگه‌های کوارتز- سولفیدی درون توالی توف‌های حدواسط و اسیدی رخ داده و به چهار مرحله قابل تفکیک است. مرحله اول کانه‌زایی شامل رگه و رگچه‌های کوارتزی (± فلوریت) دارای پیریت و کالکوپیریت می‌باشد. مرحله دوم کانه‌زایی شامل رگه‌ها و بِرش‌های گرمابی با سیمان کوارتز- سولفیدی (گالن، اسفالریت± کالکوپیریت ± پیریت) است. مرحله سوم کانه‌زایی با حضور کوارتز و هماتیت در رگه‌ها و سیمان گرمابی بِرش‌ها مشخص می‌شود. مرحله چهارم شامل رگه و رگچه‌های کوارتز- کلسیتی تأخیری فاقد کانه‌زایی است. دگرسانی گرمابی شامل دگرسانی‌های سیلیسی، آرژیلیک متوسط، کربناتی و پروپلیتیک است. پیریت، کالکوپیریت، گالن و اسفالریت همراه با مقدار اندکی هماتیت، کانه‌های معدنی در زاجکان هستند. کوارتز، فلوریت، سریسیت، کلریت و کلسیت کانی‌های باطله می‌باشند. ساخت و بافت کانسنگ شامل دانه‌‌پراکنده، رگه- رگچه‌ای، بِرشی، شانه‌ای، پوسته‌ای، کاکلی، پرمانند، گل‌کلمی و پُرکننده فضای خالی است. الگوی عناصر کمیاب و نادر خاکی به‌‌هنجارشده به کندریت برای نمونه‌های کانه‌دار و سنگ‌های میزبان، مشابه و بیانگر نقش این سنگ‌ها در تأمین عناصر کانه‌ساز می‌باشد. مطالعات میانبارهای سیال نشان می‌دهد سیالات مسئول کانه‌زایی در زاجکان یک سیستم H2O-NaCl با دمای متوسط (150 تا 295 درجه سانتی‌گراد) و شوری پایین (2/0 تا 6/7 درصد وزنی معادل نمک طعام) است. روند تکامل سیال کانه‌ساز با فرایندهای اختلاط و جوشش سیالات هم‌خوانی دارد. عمق کانه‌زایی بین 480 تا 820 متر زیر سطح آب‌های قدیمی می‌باشد. کانسار زاجکان از نوع کانسارهای اپی‌ترمال سولفیداسیون حدواسط است.

کلیدواژه‌ها


Aghazadeh, M., Badrzadeh, Z., Castro, A., 2015. Petrogenesis and U-Pb SHRIMP Dating of Tarom Plutons. Scientific Quarterly Journal, Geosciences 24(95), 3–20 (in Persian with English abstract).
Albinson, T., Norman, D.I., Cole, D., Chomiak, B., 2001. Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data. Society of Economic Geology Special Publication 8, 1–32.
Albinson, T.F., 1988. Geologic reconstruction of paleosurfaces in the Sombrerete, Colorado, and Fresnillo districts, Zacatecas State, Mexico. Economic Geology 83(8), 1647–1667.
Bazargani-Guilani, K., Parchekani, M., 2011. Metallogenic properties of Barik-Ab Pb–Zn (Cu) ore deposit with acidic tuff host rock, west Central Alborz, northwest of Iran. Scientific Quarterly Journal, Geosciences 20 (78), 97–104. (in Persian with English abstract).
Berger, B.R., Eimon, P.I., 1983. Conceptual models of epithermal metal deposits. Shanks,
Bienvenu, P., Bougault, H., Joron, J.L., Treuil, M., Dmitriev, L., 1990. MORB alteration: rare-earth element/non-rare-earth hygromagmaphile element fractionation. Chemical Geology 82, 1–14.
Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochimica et Cosmochimica Acta 57(3), 683–684.
Bodnar, R.J., Burnham, C.W., Sterner, S.M., 1985a. Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O–NaCl to 1000 °C and 1500 bars. Geochimica et Cosmochimica Acta 49(9), 1861–1873.
Bodnar, R.J., Reynolds, T.J., Kuehn, C.A., 1985b. Fluid-inclusion systematics in epithermal systems. Reviews in Economic Geology 2, 73–97.
Bouzari, F., Clark, A.H., 2006. Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado Hypogene Protore, I Region, northern Chile. Economic Geology 101(1), 95–134.
Burnham, C.W., 1979. Magmas and hydrothermal fluids. In: Barnes H.L. (Editor), Geochemistry of hydrothermal ore deposits. 2nd edition, John Wiley and Sons Inc, New York, pp. 71–136.
Camprubi, A., Albinson, T., 2007. Epithermal deposits in Mexico, update of current knowledge, and an empirical re-classification. The Geological Society of America Special Paper 422, 14–39.
Canet, C., Franco, S.I., Prol-Ledesma, R.M., González-Partida, E., Villanueva-Estrada, R.E., 2011. A model of boiling for fluid inclusion studies: Application to the Bolaños Ag–Au–Pb–Zn epithermal deposit, Western Mexico. Journal of Geochemical Exploration 110(2), 118–125.
Chang, Z., Hedenquist, J.W., White, N.C., Cooke, D.R., Roach, M., Deyell, C.L., Garcia Jr, J., Gemmell, J.B., McKnight, S., Cuison, A.L., 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology 106(8), 1365–1398.
Cole, D.R., Drummond, S.E., 1986. The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions: A preliminary assessment and possible implications for the formation of epithermal precious metal ore deposits. Journal of Geochemical Exploration 25 (1–2), 45–79.
Cooke, D.R., McPhail, D.C., 2001. Epithermal Au-Ag-Te mineralization, Acupan, Baguio district, Philippines: numerical simulations of mineral deposition. Economic Geology 96(1), 109–131.
Cooke, D.R., Simmons, S.F., 2000. Characteristics and genesis of epithermal gold deposits. Reviews in Economic Geology 13, 221–244.
Davis, D.W., Lowenstein, T.K., Spencer, R.J., 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O, and NaCl–CaCl2–H2O. Geochimica et Cosmochimica Acta 54(3), 591–601.
Dokuz, A., Tanyolu, E., Genc, S., 2005. A mantle and a lower crust derived bimodal suite in the Yusufeli Artvin area, NE Turkey: Trace element and REE evidence for Subduction-related rift origin of Early Jurasic Demirkent intrusive complex. Int. Journal of Earth Sciences (Geologische Rundsch) 95(3), 370–394
Einaudi, M.T., Hedenquist, J.W., Inan, E.E., 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In: Simmons, S.F., Graham, I. (Eds.), Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth. Economic Geology Special Publication 10, 285–313.
Esmaeli, M., Lotfi, M. and Nezafati, N., 2015. Fluid inclusion and stable isotope study of the Khalyfehlou copper deposit, southeast Zanjan, Iran. Arabian Journal of Geosciences 8(11), 9625–9633.
Fan, H.R., Hu, F.F., Wilde, S.A., Yang, K.F., Jin, C.W., 2011. The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid-inclusion and stable-isotope evidence for an origin from magmatic fluids. International Geology Reviews 53, 25–45.
Feizi, M., Ebrahimi, M., Kouhestani, H., Mokhtari, M.A.A., 2016. Geology, mineralization and geochemistry of Aqkand Cu occurrence (north of Zanjan, Tarom–Hashtjin zone). Journal of Economic Geology 8(2), 507–524 (in Persian with extended English abstract).
Fournier, R.O., 1985. The behavior of silica in hydrothermal solutions. Reviews in Economic Geology 2, 45–61.
Gemmell, J. B., 2004.  Low-and intermediate-sulfidation epithermal deposits. In: Cooke, D.R., Deyel, C.L., Pongratz, J. (Eds), 24 Ct Gold Workshop. University of Tasmania, Hobart, Australia, pp. 57–63.
Ghasemi Siani, M., Mehrabi, B., Azizi, H., Wilkinson, C.M., Ganerod, M., 2015. Geochemistry and geochronology of the volcano-plutonic rocks associated with the Glojeh epithermal gold mineralization, NW Iran. Open Geosciences 7, 207–222.
Goldstein, R.H., 2003. Petrographic analysis of fluid inclusions. In: Samson, I., Anderson A., Marshall, D., (Eds), Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Short Course 32, 9–53.
Haas, J.L., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Economic Geology 66(6), 940–946.
Hedenquist, J.W., Arribas, A., 1998. Evolution of an intrusion-centered hydrothermal system: Far southeast Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Economic Geology 93(4), 373–404.
Hedenquist, J.W., Arribas, A., Gonzalez-Urien, E., 2000. Exploration for epithermal gold deposits. In: Hagemann, S.G., Brown, P.E. (Eds), Gold in 2000. Reviews in Economic Geology 13, 245–277.
Hedenquist, J.W., Arribas, A., Reynolds, T.J., 1998. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Economic Geology 93(4), 373–404.
Hedenquist, J.W., Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature 370(6490), 519–527.
Henley, R.W., Hughes, G.O., 2000. Underground fumaroles: “Excess heat” effects in vein formation. Economic Geology 95(3), 453–466.
Hosseiny, M., Moosavi, E., Rasouli Jamadi, F., 2016. Geological map of Abhar, Scale 1:100,000, Geological Survey of Iran.
Hossienzadeh, M.R., Maghfouri, S., Moayyed, M., Rahmani, A., 2016. Khalyfehlou deposit: High-sulfidation epithermal Cu-Au mineralization in the Tarom magmatic zone, north Khoramdareh. Scientific Quarterly Journal, Geosciences 25(99), 179–194. (in Persian with English abstract).
Humphris, S.E., 1984. The mobility of the rare earth elements in the crust. In: Henderson, P., (Ed.), Rare earth element geochemistry. Elsevier, Amsterdam, pp. 317–342.
Jébrak, M., 1997. Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geology Reviews 12, 111–134.
Jobson, D.H., Boulter, C.A., Foster, R.P., 1994. Structural controls and genesis of epithermal gold-bearing breccias at the Lebong Tandai mine, Western Sumatra, Indonesia. Journal of Geochemical Exploration 50(1–3), 409–428.
John, D.A., 2001. Miocene and early Pliocene epithermal gold–silver deposits in the northern Great Basin, western USA: Characteristics, distribution, and relationship to magmatism. Economic Geology 96(8), 1827–1853.
Khakzad, A., Hajalilou, B., 1999. Investigation on Pb, Zn and Cu mineralization in northwest of Zanjan and east of Mianeh and their relation to pervasive hydrothermal alteration. 3rd Symosium of Geological Society of Iran, University of Shiraz, Shiraz, Iran. (in Persian with English abstract).
Klemm, L.M., Pettke, T., Heinrich, C.A., Campos, E., 2007. Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu–Mo ore deposition from low-salinity magmatic fluids. Economic Geology 102(2), 1021–1045.
Kouhestani, H., 2018. Temporal–spatial relationships between epithermal mineralization and Eocene magmatism at the Tarom-Hashtjin region, Tethyan metallogenic belt, northwestern Iran. Institute of Geology and Geophysics, Chinese Academy of Sciences, Unpublished Report, 150 pp.
Kouhestani, H., Azimzadeh, A.M., Mokhtari, M.A.A., Ebrahimi, M. 2017. Mineralization and fluid evolution of epithermal base metal veins from the Aqkand deposit, NW Iran. Neues Jahrbuch für Mineralogie-Abhandlungen (Journal of Mineralogy and Geochemistry) 194(2), 139–155.
Kouhestani, H., Mokhtari, M.A.A., Chang, Z., 2018b. Origin and evolution of mineralizing fluids of the Armaqan Khaneh epithermal base metal deposits, NW Iran: Fluid inclusion and stable isotope perspective. Porphyry Cu–Au–Mo Mineral System International Symposium, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.
Kouhestani, H., Mokhtari, M.A.A., Chang, Z., Johnson, A.C., 2018a. Intermediate-sulfidation type base metal mineralization at Aliabad–Khanchy, Tarom–Hashtjin metallogenic belt. NW Iran. Ore Geology Reviews 93, 1–18.
Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z., Zhang, X.N., 2020. Genesis of the Abbasabad epithermal base metal deposit, NW Iran: Evidences from ore geology, fluid inclusion and O–S isotopes. Ore Geology Reviews 126, 103752.
Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z., Zhao, J.X., 2019. Origin and evolution of hydrothermal fluids in the Marshoun epithermal Pb–Zn–Cu (Ag) deposit, Tarom–Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews 113, 103087.
Li, H., Tang, J., Hu, G., Ding, S., Li, Z., Xie, F., Teng, L., Cui, S., 2019. Fluid inclusions, isotopic characteristics and geochronology of the Sinongduo epithermal Ag–Pb–Zn deposit, Tibet, China. Ore Geology Reviews 107, 692–706.
Liu, J., Mao, J.W., Wu, G., Wang, F., Luo, D.F., Hu, Y.Q., Li, T.G., 2014. Fluid inclusions and H-O–S–Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongjiang Province, China. Ore Geology Reviews 59, 83–96.
Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews 7(1), 25–41.
Mehrabi, B., Choghaneh, N., Tale Fazel, E., 2009. Petrology, mineralogy and alteration studies of anomaly no. 4 of Gulloje polymetal deposit (northwest of Zanjan). 1st Symposium of Iranian Society of Economic Geology, Ferdowsi University of Mashhad, Mashhad, Iran.
Mehrabi, B., Ghasemi Siani, M., Goldfarb, R., Azizi, H., Ganerod, M., Marsh, E.E., 2016. Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran. Ore Geology Reviews 78, 41–57.
Mehrabi, B., Ghasemi Siani, M., Tale Fazel, E., 2014. Base and precious metal ore-formation system in the Cheshmeh Hafez and Challu mining area, Torud-Chah Shirin magmatic arc. Scientific Quarterly Journal, Geosciences 24(93), 105–118. (in Persian with English abstract).
Mehrabi, B., Tale Fazel, E., Ghasemi Siani, M., Eghbali, M.A., 2010. Investigation on mineralization and genetic model of Gulloje Cu-Au vein deposit (north of Zanjan), using mineralogical, geochemical and fluid inclusion data. Journal of Sciences 35(4), 185–199. (in Persian with English abstract).
Mikaeili, K., Hosseinzadeh, M.R., Moayyed, M., Maghfouri, S., 2018. The Shah-Ali-Beiglou Zn–Pb–Cu (Ag) deposit, Iran: An example of intermediate-sulfidation epithermal type mineralization. Minerals 8(4), 148.
Mokhtari, M.A.A., Kouhestani, H., Saeedi, A., 2016. Investigation on type and origin of cooper mineralization at Aliabad Mousavi–Khanchy occurrence, east of Zanjan, using petrological, mineralogical and geochemical data. Scientific Quarterly Journal, Geosciences 25(100), 259–270. (in Persian with English abstract).
Moncada, D., Baker. D., Bodnar, R.J., 2017. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag–Au mineralization in the La Luz area, Guanajuato Mining District, México. Ore Geology Reviews 89, 143–170.
Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D., Bodnar, R.J., 2012. Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical Exploration 114, 20–35.
Mousavi Motlagh, S.H., Ghaderi, M., Yasami, N., Alfonso, P., 2019. Stable isotope geochemistry of Chargar epithermal deposit: Constraints on epithermal systems in the Tarom metallogenic belt, NW Iran. Journal of Geochemical Exploration 205, 106331.
Mousavi Motlagh, S.H., Ghaderi, M., 2019. The Chargar Au-Cu deposit: an example of low-sulfidation epithermal mineralization from the Tarom subzone, NW Iran. Neues Jahrbuch für Mineralogie-Abhandlungen (Journal of Mineralogy and Geochemistry) 196(1), 43–66.
Muntean, J.L., Einaudi, M.T., 2001. Porphyry-epithermal transition, Maricunga Belt, northern Chile. Economic Geology 96(4), 743–772.
Murphy, J.B., Hynes, A.J., 1986. Contrasting secondary mobility of Ti, P, Zr, Nb and Y in two meta-basaltic suites in the Appalachians. Canadian Journal of Earth Sciences 23(8), 1138–1144.
Nabatian, G., Ghaderi, M., Neubauer, F., Honarmandc, M., Xiaoming, L., Dong, Y., Jiang, S.H., Quadt, A., Bernroider, M., 2014. Petrogenesis of Tarom high-potassic granitoids in the Alborz-Azarbaijan belt, Iran: Geochemical, U-Pb zircon and Sr–Nd–Pb isotopic constraints. Lithos 184–187, 324–345.
Nabatian, G., Jiang, S.Y., Honarmand, M., Neubauer, F., 2016. Zircon U-Pb ages, geochemical and Sr–Nd–Pb–Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran. Lithos 244, 43–58.
Nabavi, M.H., 1976. An introduction to geology of Iran. Geological Survey of Iran, Tehran, 109 p. (in Persian)
Naderlou, F., Mokhtari, M.A.A., Kouhestani, H., Nabatian, Gh., 2021. Type and origin of the north Chargar Cu–Au mineralization, southeast Zanjan: Using petrological, mineralogical and geochemical data. Scientific Quarterly Journal, Geosciences 31(120), 149/–162. (in Persian with English abstract).
Ouyang, H., Wu, X., Mao, J.W., Su, H., Santosh, M., Zhou, Z., Li, C., 2014. The nature and timing of ore formation in the Budunhua copper deposit, southern Great Xing'an Range: Evidence from geology, fluid inclusions, and U–Pb and Re–Os geochronology. Ore Geology Reviews 63, 238–251.
Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer, Berlin, p. 1250.
Prokofiev, V.Y., Garofalo, P.S., Bortnikov, N.S., Kovalenker, V.A., Zorina, L.D., Grichuk, D.V., Selektor, S.L., 2010. Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia. Economic Geology 105(2), 395–416.
Rabiei, M., Chi, G., Normand, C., Davis, W.J., Fayek, M., Blamey, N.J.F., 2017. Hydrothermal rare earth element (Xenotime) mineralization at Maw Zone, Athabasca Basin, Canada, and its relationship to unconformity-related uranium deposits. Economic Geology 112(6), 1483–1507.
Ramboz, C., Pichavant, M., Weisbrod, A., 1982. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology 37(1–2), 29–48.
Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy 12, Mineralogical Society of America, p. 644.
Roedder, E., Bodnar, R.J., 1980. Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences 8(1), 263–301.
Ronacher, E., Richards, J.P., Johnston, M.D., 2000. Evidence for fluid phase separation in high-grade ore zones at the Porgera gold deposit, Papua New Guinea. Mineralium Deposita 35(7), 683–688.
Rusk, B.G., Reed, M.H., Dilles, J.H., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology 103(2), 307–334.
Sabeva, R., Mladenova, V., Mogessie, A., 2017. Ore petrology, hydrothermal alteration, fluid inclusions, and sulfur stable isotopes of the Milin Kamak intermediate sulfidation epithermal Au-Ag deposit in Western Srednogorie, Bulgaria. Ore Geology Reviews 88, 400–415.
Scott, A.M., Watanabe, Y., 1998. Extreme boiling model for variable salinity of the Hokko low-sulfidation epithermal Au prospect, southwestern Hokkaido, Japan. Mineralium Deposita 33(6), 568–578.
Shahbazi, S., 2020. Geochemistry and genesis of Zehabad Pb-Zn-Au-Ag-Cu polymetallic deposit in NW Iran. Unpublished Ph.D Thesis, Tarbiat Modares University, Tehran. (in prsian with English abstract).
Shahbazi, S., Ghaderi, M., Alfonso, P., 2019. Mineralogy, alteration, and sulfur isotope geochemistry of the Zehabad intermediate-sulfidation epithermal deposit. NW Iran. Turkish Journal of Earth Sciences 28, 882–901.
Shepherd, T.J., Ranbin, A.H., Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Blackie, Glasgow, p. 223.
Sherlock, R.L., Tosdal, R.M., Lehrman, N.J., Graney, J.R., Losh, S., Jowett, E.C., Kesler, S.E., 1995. Origin of the McLaughlin mine sheeted vein complex: metal zoning, fluid inclusion and isotopic evidence. Economic Geology 90(8), 2156–2181.
Sillitoe, R.H., Hedenquist, J.W., 2003. Linkages between volcano-tectonic settings, ore-fluid compositions, and epithermal precious-metal deposits. Society of Economic Geology, Special Publication 10, 315–343.
Simmons, S.F., Brown, K.L., 2006. Gold in magmatic hydrothermal solutions and the rapid formation of a Giant ore deposit. Science 314(5797), 288–291.
Simmons, S.F., Browne, P.R.L., 2000. Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments. Economic Geology 95(5), 971–1000.
Simmons, S.F., White, N.C., John, D.A., 2005. Geological characteristics of epithermal precious and base metal deposits. Economic Geology 100th Anniversary 485–522.
Simpson, M.P., Mauk, J.L., Simmons, S.F., 2001. Hydrothermal alteration and hydrologic evolution of the Golden Cross epithermal Au–Ag deposit, New Zealand. Economic Geology 96(4), 773–796
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London, Special Publication 42(1), 313–45.
Takács, Á., Molnár, F., Turi, J., Mogessie, A., Menzies, J.C., 2017. Ore mineralogy and fluid inclusion constraints on the temporal and spatial evolution of a high-sulfidation epithermal Cu–Au–Ag deposit in the Recsk ore complex. Hungary. Economic Geology 112, 1461–1481.
Taylor, R., 2009. Ore textures: Recognition and interpretation. Springer-Verlag, Berlin, p. 287.
Thiersch, P.C., Williams-Jones, A.E., Clark, J.R., 1997. Epithermal mineralization and ore controls of the Shasta Au–Ag deposit, Toodoggone District, British Columbia, Canada. Mineralium Deposita 32(1), 44–57.
Thompson, R.N., 1982. Magmatism of the British Tertiary volcanic province. Scottish Journal of Geology 18(1), 49–107.
Urusova, M.A., 1975. Volume properties of aqueous solutions of sodium chloride at elevated temperatures and pressures. Russian Journal of Inorganic Chemistry 20, 1717–1721.
Wang, L., Qin, K.Z., Song, G.Y., Li, G.M., 2019. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews 107, 434–456.
Wang, Q., Wyman, D.A., Xu, J.F, Zhao, Z.H., Jian, P., Xiong, X.L., Bao, Z.W., Li, C.F., Bai, Z.H., 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui province (eastern china): Implications for geodynamics and Cu-Au mineralization. Lithos 89, 1–26.
White, N.C., Hedenquist, J.W., 1995. Epithermal gold deposits: Styles, characteristics and exploration. SEG News Letter 23(1), 9–13.
Whitford, D.J., Korsch, M.J., Porritt, P.M., Craven, S.J., 1988. Rare earth element mobility around the volcanogenic polymetallic massive sulfide deposit at Que River, Tasmania, Australia. Chemical Geology 68(1–2), 105–119.
Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos 55(1–4), 229–272.
Yardley, B.W.D., 2005. Metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology 100(4), 613–632.
Yardley, B.W.D., Bodnar, R.J., 2014. Fluids in the continental crust. Geochemical Perspectives 3(1), 1–2.
Yilmaz, H., Oyman, T., Arehart, G.B., Colakoglu, A.R., Billor, Z., 2007. Low-sulfidation type Au–Ag mineralization at Bergama, Izmir, Turkey. Ore Geology Reviews 32, 81–124.
Yilmaz, H., Oyman, T., Sonmez, F.N., Arehart, G.B., Billor, Z., 2010. Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Sahinli/Tespih Dere (Lapseki/Western Turkey). Ore Geology Reviews 37(3–4), 236–258.
Zamanian, H., Rahmani, S., Zareisahameih, R., 2019. Fluid inclusion and stable isotope study of the Lubin-Zardeh epithermal Cu–Au deposit in Zanjan Province, NW Iran: Implications for ore genesis. Ore Geology Reviews 112, 103014.
Zamanian, H., Rahmani, S., Zareisahamieh, R., Pazoki, A., Yang, X.Y., 2020. Geochemical characteristics of igneous host rocks of Lubin-Zardeh Au–Cu deposit, NW Iran. Ore Geology Reviews 122, 103496.
Zhai, D., Liu, J., Wang, J., Yao, M., Wu, S., Fu, C., Liu, Z., Wang, S., Li, Y., 2013. Fluid evolution of the Jiawula Ag–Pb–Zn deposit, Inner Mongolia: Mineralogical, fluid inclusion, and stable isotopic evidence. International Geology Reviews 55(2), 204–224.
Zhai, W., Sun, X., Sun, W., Su, L., He, X., Wu, Y., 2009. Geology, geochemistry, and genesis of Axi: a Paleozoic low-sulfidation type epithermal gold deposit in Xinjiang, China. Ore Geology Reviews 36(4), 265–281.
Zhu, Y.F., Zeng, Y.S., Jiang, N., 2001. Geochemistry of the ore-forming fluids in gold deposits from the Taihang Mountains, northern China. International Geology Reviews 43, 457–473.