Investigation of Makran seismicity in southeast Iran, before and after 2011 Dalbandin earthquake of Pakistan with Mw: 7.2

Authors

1 Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran

2 Department of Statistics, Faculty of Sciences, Golestan University, Gorgan, Iran

Abstract

From 2011 to 2013, several major earthquakes occurred in the Makran Seismotectonic zone (Iran and Pakistan). The low event interval of these earthquakes in a tectonic zone may indicate their interaction. In this paper, the interactions between 2011 Dalbandin earthquake of Pakistan, 2013 Saravan and Goharan earthquakes of Makran seismotectonic zone in SE Iran was investigated by calculating the Coulomb stress changes. Maps and cross sections of coseismic stress changes show that Saravan and Goharan earthquakes have occurred in the stress enhanced areas indicating the positive effect of Dalbandin earthquake on trigerring the mentioned events. In order to quantify the seismicity level changes, statistical parameters including b-value, seismicity rate and temporal changes of local standard deviation of gradient (lsd) were calculated over a 10 year period (5 years before and after the Dalbandin earthquake).The results show that the seismicity rate of Makran seismotectonic zone has significantly increased after this event. The temporal variation graph of lsd parameter also decreases at the time of the Dalbandin earthquake event, indicating an increase in seismicity rate in the region. In overall, the results indicate that the Dalbandin earthquake is the beginning of an active seismic period in the Makran subduction zone on which the peak of activity occurred in 2013 with two years delay.

Keywords


Agh-Atabai, M., Jafari Hajati, F., 2015. Coulomb stress changes and its correlation with aftershocks of recent Iranian reverse earthquakes. Arabian Journal of Geosciences 8, 2983-2995.
Aki, K., 1965. Maximum likelihood estimate of b in the formula logN = a - bM and its confidence limits. Bulletin of Earthquake Research Institute of the University of Tokyo 43, 237–239.
Ambraseys, N., 2000. Reappraisal of North-Indian earthquakes at the turn of the 20th century. Current Science 79, 1237-1250.
Ambraseys, N.N., Melville, C.P., 1982. A History of Persian Earthquakes, Cambridge University Press, p. 219.
Apel, E.V., Bürgmann, R., Steblov, G., Vasilenko, N., King, R., Prytkov, A., 2006. Independent active microplate tectonics of northeast Asia from GPS velocities and block modeling. Geophysical Research Letters 33.
Avouac, J.P., Ayoub, F., Wei, S., Ampuero, J.P., Meng, L., Leprince, S., Jolivet, R., Duputel, Z., Helmberger, D., 2014. The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault. Earth and Planetary Science Letters 391, 128-134.
Azadfar, M.R., Gheitanchi, M.R., 2015. Identifying causative fault of 11th May 2013 Goharan Earthquake using relocation of aftershocks and focal mechanisms. Iranian Journal of Geophysics 9, 54-67 (In Persian).
Barnhart, W.D., Hayes, G.P., Briggs, R.W., Gold, R.D., Bilham, R., 2014. Ball-and-socket tectonic rotation during the 2013 Mw7. 7 Balochistan earthquake. Earth and Planetary Science Letters 403, 210-216.
Bayer, R.J., Chery, J., Tatar, M., Vernant, Ph., Abbassi, M., Masson, F., Nilforoushan, F., Doerflinger, E., Regard, V., Bellier, O., 2006. Active deformation in Zagros-Makran transition zone inferred from GPS measurements. Geophysical Journal International 165, 373–381.
Burg, J.P., 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Science Reviews 185, 1210-1231.
Byrne, D.E., Sykes, L.R., Davis, D.M., 1992. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. Journal of Geophysical Research 97, 449–478
Cochran, W.G., 1977. Sampling Techniques. New York, p. 448.
Dykstra, J.D., Birnie, R.W., 1979. Segmentation of the Quaternary Subduction Zone under the Baluchistan Region of Pakistan and Iran, in Geodynamics of Pakistan. Geological Survey of Pakistan, 319–323.
Engdahl, E.R., Villaseñor, A., 2002. International handbook of earthquake and engineering seismology, Part A.
Farhoudi, G., Karig, D.E., 1977. Makran of Iran and Pakistan as an active arc system. Geology 5, 664-668.
Fruehn, J., White, R.S., Minshull, T.A., 1997. Internal deformation and compaction of the Makran accretionary wedge. Terra Nova 9, 101–104.
Gonzalez‐Huizar, H., Velasco, A.A., Peng, Z., Castro, R.R., 2012. Remote triggered seismicity caused by the 2011, M9. 0 Tohoku‐Oki, Japan earthquake. Geophysical research letters 39.
Gurgan E., 2014. Source characteristics and Coulomb stress change of the 19 May 2011 Mw 6.0 Simav–Kutahya earthquake, Turkey. Journal of Asian Earth Sciences 87, 79–88.
Harris, R.A., 1998. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. Journal of Geophysical Research: Solid Earth 103, 24347–24358.
Harris, R.A., Simpson, R.W., Reasenberg, P. A., 1995. Influence of static stress changes on earthquake locations in southern California. Nature 375, 221-224.
Hoffmann, G., Grützner, C., Reicherter, K., Preusser, F., 2015. Geo-archaeological evidence for a Holocene extreme flooding event within the Arabian Sea (Ras al Hadd, Oman). Quaternary Science Reviews 113, 123-133.
IIEES, International Institute of Earthquake Engineering and Seismology, http://www.iiees.ac.ir.
Iqbal, J., Jadoon, I.A.K., Raja, I.A., 2017. The Baluchistan earthquake of 24 September 2013, Mw 7.7: Emergence of a new island in the Arabian Sea. Journal of Earth Sciences and Environmental Studies 2, 1-13.
ISC, International Seismological Center, www.isc.ac.uk.
Jolivet, R., Duputel, Z., Riel, B., Simons, M., Rivera, L., Minson, S. E., Zhang, H., Aivazis, M.A.G., Ayoub, F., Leprince, S., Samsonov, S., 2014. The 2013 Mw 7.7 Balochistan Earthquake: seismic potential of an accretionary wedge. Bulletin of the Seismological Society of America 104, 1020-1030.
Karimiparidari, S., Zaré, M., Memarian, H., Kijko, A., 2013. Iranian earthquakes, a uniform catalog with moment magnitudes. Journal of Seismology 17, 897-911.
Khan, M.A., Bendick, R., Bhat, M.I., Bilham, R., Kakar, D.M., Khan, S.F., Lodi, S.H., Qazi, M.S., Singh, B., Szeliga, W., Wahab, A., 2008. Preliminary geodetic constraints on plate boundary deformation on the western edge of the Indian plate from TriGGnet (Tri-University GPS Geodesy Network). Journal Himalayan Earth Sciences 41, 71–87.
King, G.C.P., Cocco, M., 2001. Fault interaction by elastic stress changes: New clues from earthquake sequences.Advances in Geophysics 44, 1–38.
King, G.C.P., Stein, R.S., Lin, J., 1994. Static stress changes and triggering of earthquakes. Bulletin of the Seismological Society of America 84, 935-953.
Kopp, C., Fruehn, J., Flueh, E., Reichert, C., Kukowski, N., Bialas, J., Klaeschen, D., 2000. Structure of the Makran subduction zone from wide angle and reflection seismic data. Tectonophysics 329, 171–191.
Laane, J.L., Chen, W.P., 1989. The Makran earthquake of 1983 April 18: A possible analogue to the Puget Sound earthquake of 1965?. Geophysical Journal International 98, 1-9.
Lin, J., Stein, R.S., 2004. Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research: Solid Earth 109, B02303.
Maggi, A., Jackson, J.A., Priestley, K., Baker, C., 2000. A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: do earthquakes really occur in the continental mantle?. Geophysical Journal International 143, 629–661.
Mahmood, I., Iqbal, M.F., Mughal, M.R., Shahzad, M.I., Tariq, Sh., Ullah, K., 2017. An Investigation of 2013 Mw 7.7 Awaran Earthquake. Pakistan. International Letters of Natural sciences 61, 36-42.
Martin, S.S., Kakar, D.M., 2012. The 19 January 2011 Mw 7.2 Dalbandin earthquake, Balochistan. Bulletin of the Seismological Society of America 102, 1810–1819.
Mirabedini, M., 2018. A quantitative study of earthquake pattern in the Zagros Belt: using some new approachs. Ph.D Thesis. Golestan University.
Mirzaei, N., Gao, M., Chen, Y.T., 1998. Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces. Journal of Earthquake Prediction Research 7, 465-495.
NEIC, National Earthquake Information Center, USGS
Niazi, M., Shimamura, H., Matsu’ura, M., 1980. Microearthquakes and crustal structure off the Makran coast of Iran. Geophysical Research Letters 7, 2–5.
Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America 82, 1018–1040.
Öncel, A.O., Main, I., Alptekin, Ö., Cowie, P., 1996. Spatial variations of the fractal properties of seismicity in the Anatolian fault zones. Tectonophysics 257, 189-202.
Parsons, T., Stein, R.S., Simpson, R.W., Reasenberg, P.A., 1999. Stress sensitivity of fault seismicity: A comparison between limited‐offset oblique and major strike‐slip faults. Journal of Geophysical Research: Solid Earth 104, 20183-20202.
Parsons, T., Yeats, R.S., Yagi, Y., Hussain, A., 2006. Static stress change from the 8 October, 2005 M = 7.6 Kashmir earthquake. Geophysical Research Letters 33, L06304.
Penney, C., Copley, A. Oveisi, B., 2015. Subduction tractions and vertical axis rotations in the Zagros–Makran transition zone, SE Iran: the 2013 May 11 Mw 6.1 Minab earthquake. Geophysical Journal International 202, 1122-1136.
Penney, C., Tavakoli, F., Saadat, A., Nankali, H.R., Sedighi, M., Khorrami, F., Sobouti, F., Rafi, Z., Copley, A., Jackson, J., Priestley, K., 2017. Megathrust and accretionary wedge properties and behavior in the Makran subduction zone. Geophysical Journal International 209, 1800–1830.
Pollitz, F.F., Stein, R.S., Sevilgen, V., Bürgmann, R., 2012. The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature 490, 250-253.
Prejean, S.G., Hill, D.P., Brodsky, E.E., Hough, S.E., Johnston, M.J.S., Malone, S.D., Oppenheimer, D.H., Pitt, A.M., Richards-Dinger, K.B., 2004. Remotely triggered seismicity on the United States west coast following the M w 7.9 Denali fault earthquake. Bulletin of the Seismological Society of America 94, S348-S359.
Rajput, S., Gahalaut, V.K., Sahu, V.K., 2005. Coulomb stress changes and aftershocks of recent Indian earthquake. Current Science 88, 576-588.
Ravaut, P., Carbon, D., Ritz, J.F., Bayer, R., Philip, H., 1998. The Sohar basin, Western Gulf of Oman: description and mechanisms of formation from seismic and gravity data. Marine and Petroleum Geology 15, 359–377.
Reasenberg, P.A., Simpson, R.W., 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science 255, 1687-1690.
Safari, A., Abolghasem, A.M., Abedini, N., Mousavi, Z., 2017. Assessment of optimum value for dip angle and locking rate parameters in Makran subduction zone. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42.
Smith, G., McNeill, L., Henstock, T.J., Bull, J., 2012. The structure and fault activity of the Makran accretionary prism.Journal of Geophysical Research: Solid Earth 117, B07407.
Stein, R.S., 1999. The role of stress transfer in earthquake occurrence. Nature 402, 605-609.
Stein, R.S., Barka, A.A., Dieterich, J.H., 1997. Progressive failure on the Northen Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International 128, 594–604.
Ten Brink, U., Lin, J., 2004. Stress interaction between subduction earthquakes and forearc strike‐slip faults: Modeling and application to the northern Caribbean plate boundary. Journal of Geophysical Research: Solid Earth 109.
Toda, S., Stein, R.S., 2002. Response of the San Andreas fault to the 1983 Coalinga‐Nuñez earthquakes: An application of interaction‐based probabilities for Parkfield. Journal of Geophysical Research: Solid Earth 107, ESE-6.
Toda, S., Stein, R.S., Richards-Dinger, K., Bozkurt, S. B., 2005. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer.Journal of Geophysical Research: Solid Earth 110.
Utsu, T., 1965. A method for determining the value of" b" in a formula log n= a-b M showing the magnitude-frequency relation for earthquakes. Geophysical bulletin of the Hokkaido University 13, 99-103.
Velasco, A.A., Hernandez, S., Parsons, T.O.M., Pankow, K., 2008. Global ubiquity of dynamic earthquake triggering. Nature geoscience 1, 375-379.
Wang, Y., Wang, F., Wang, M., Shen, Z.K., Wan, Y., 2014. Coulomb Stress Change and Evolution Induced by the 2008 Wenchuan Earthquake and its Delayed Triggering of the 2013 M-W 6.6 Lushan Earthquake. Seismological Research Letters 85, 52-59.
White, R.S., Louden, K.E., 1982. The Makran continental margin: structure of a thickly sedimented convergent plate boundary, in Studies in Continental Margin Geology. American Association of Petroleum Geologists 34, 499–518.
Wiemer S., Wyss M., 2000. Minimum magnitude of complete reporting in earthquake catalogs: examples from the western United States, Alaska, and Japan. Bulletin of the Seismological Society of America 90, 859–869.
Zare, M., Ansari, A., Heydari, H., Shahvar, M.P.M., Daneshdust, M., Mahdian, M., Sinaiean, F., Farzanegan, E., Mirzaei Alavijeh, H., 2013. A Reconnaissance Report on two. Iran, Makran Earthquakes; 16 April 2013, Mw7.8, Gosht (Saravan) and 11 May 2013 Irar (Goharan), Bashagard, SE of Iran. Earthquake engineering research institute.