Estimation of ML scale for earthquakes in Iran

Abstract

1-Introduction
For the first time in the modern history of seismology, Richter, (1935) invented a local magnitude scale (ML) for earthquakes for region of California. This scale is appropriate for estimation of magnitude of a wide range of earthquakes. Few investigations were performed about ML scale for earthquakes in Iran in different areas and using different databases. Shoja-Taheri, et al. (2007), Askari et al. (2009) and Nemati et al. (2014) are the examples from ML estimation in Iran. Shoja-Taheri, et al. (2007) used the strong motion data of NE Iran, Askari et al. (2009) used amplitude of short period seismograms in north of Iran and Nemati et al. (2014) used amplitude of waveforms of a local network data in eastern Alborz to calculate a local scale for magnitude of earthquakes in Iran.
 
2-Methodology
ML of the earthquakes is calculated using averaging between the maximum amplitude of shear waves in the horizontal components of the waveforms of the earthquakes. Equation of ML is a logarithmic and parametric relationship. ML equation parameters should be determined for each seismic area. Estimation of a local magnitude scale is necessary for precisely estimation of magnitude of earthquakes in every seismic area. For calculation of ML for the earthquake of a specific area, it is better that the parameters should be estimated using the earthquake data of the same region. In this research the ML equation is determined for entire Iran using Iranian earthquakes, for the first time. Some researchers divide Iran into distinct seismotectonic regions, in which they calculate ML for each area, separately. In this paper ML is calibrated for entire Iran, because ray path of an earthquake in a specific region may cross the neighboring provinces. The chosen earthquakes for ML determination should be the most precisely located earthquakes, because the epicentral distance is so important in the processing. For this purpose, 1409 synthetic Wood-Anderson amplitude of 229 earthquakes occurred in 24 – 42 °N and 43 – 65 °E with magnitude of 3.5 - 5.4, azimuthal gap less than 180°and RMS less than 0.5 were used. These earthquakes were recorded by seismological network of International Institute of Earthquake Engineering and Seismology of Iran between 2004 and 2016. The processing was done using Matlab software and arranging a big matrix composed of the epicentral distances, amplitudes and their functions. The amplitudes have been read using Seisan software on the horizontal components by automatic picking. In this stage, the amplitudes (velocity) are changed to the Wood-Anderson torsion seismograph scale (displacement). After reading, huge number of numbers (amplitudes, distances, earthquake coordinates,…) form the mentioned matrix equation.
 
3-Results and discussion
After the processing and inverting thematrix equation, using a parametric equation, in which geometrical spreading and inelastic attenuation were supposed, the attenuation equation for local magnitude in Iran were estimated:
 
Inelastic attenuation is related to microscopic incompletions in mineralogical structure of the minerals, existence of water or the other fluids in porosities of the rocks, discontinuities in earthcrust, friction and transforming the wave momentum energy into temperature in wave path. In this relation, 100 km for epicentral distance of the earthquakes and the constant number (3.0) for magnitude of earthquakes were put, because of Richter primary conditions for calibration of the ML equation in 1935. The station corrections (Sj) were obtained for all of the stations representing overestimation and underestimation of ML for correction the output magnitudes. The abovementioned numbers were put, because it is supposed that an earthquake with the magnitude of 3.0 produces 1 mm amplitude in a seismograph, which is installed in a distance of 100 km. This equation suggests more attenuation for wave amplitude for distances more than 150 km in comparison to the previously estimation of Hutton and Boore, (1987) equation.
 
4-Conclusion
1)      It could be concluded from this paper that wave amplitude attenuation decreases with distance in order of 1/r1.0928 and geological site effects in Iran on magnitude estimation is in a broad range of 0.7.
2)      One of the preferences of this work (determination of ML for the entire Iran) in comparison to the other works (determination of ML for the seismotectonic provinces of Iran, individually) is that the ray path of a regional earthquake always cut more than two seismotectonic provinces.
3)      This relation is useful for the governmental institutions in Iran that calculates the ML, like International Institute of Earthquake Engineering and Seismology of Iran.
4)      Obtained station corrections were estimated between -0.198-0.44 magnitude unit.
 
References
Askari.R., Ghods.A.R., Sobuti.F., 2009, Calibration of an ML Scale in the Alborz Region, Northern Iran, Bull. Seismol. Soc. Am., Vol: 99, p: 268-27.
Hutton. L.K., Boore.D.M., 1987, The ML scale in southern California, Bull. Seismol. Soc. Am., Vol: 77, p: 2074-2094.
Nemati, M., Ghods, A. and Ghasemi, M.R., 2014. A ML scale for the events in eastern-central Alborz. Quaterly Journal of Geoseinces, Geological Survey of Iran, 95, 115-122, (in Persian).
Richter.C.F., 1935. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., Vol: 25, p: 1-32.
Shoja-Taheri.J., Naserieh.S., Ghofrani.H., 2007, ML and MW Scales in the Iranian Plateau Based on the Strong-Motion Records, Bull. Seismol. Soc. Am., Vol: 97, p: 661-669.
 
 

Keywords

Main Subjects


آقانباتی. ع.، 1383، زمین‌شناسی ایران. چاپ سازمان زمین‌شناسی کشور.
سعیدیان. م.، 1394. برآورد مقیاس ML برای بزرگای زمین‌لرزه‌های محلی در شرق ایران، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد کرمان.
شهبازی. س.، ثبوتی، ف.، قدس، ع. 1389. محاسبه مقیاس بزرگای محلی زمین‌لرزه برای آذربایجان شرقی، چهاردهمین کنفرانس ژئوفیزیک ایران، موسسه ژئوفیزیک دانشگاه تهران.
لی. ت.، والاس. ت.س.، 1387، لرزه‌شناسی مدرن جهانی، ترجمه حیدریان شهری م ر. مشهد: انتشارات دانشگاه فردوسی مشهد.
نعمتی. م.، قدس. ع.، قاسمی. م. ،1394، مقیاس ML برای بزرگای زمین‌لرزه‌های محلی در البرز میانی-خاوری، فصل‌نامه علوم زمین، بهار 1394، شماره 95:ص 115-122.
نعمتی. م.، 1397، مبانی لرزه‌زمین‌ساخت با نگاهی ویژه به لرزه‌زمین‌ساخت ایران‌زمین، انتشارات دانشگاه شهیدباهنر کرمان، زیر چاپ.
 
Alsaker. A , Kvamme, L.B., Hansen, R.A., Dahle, A., Bungum, H., 1991, The ML scale in Norway. Bull. Seism. Soc. Am., Vol: 81, p: 379-389.
Askari. R., Ghods. A.R., Sobuti. F., 2009, Calibration of an ML Scale in the Alborz Region, Northern Iran, Bull. Seismol. Soc. Am., Vol: 99, p: 268–27.
Bakun, W.H., Joyner W.B., 1984, The ML scale in central California, Bull. Seismol. Soc. Am., Vol: 74, p: 1827–1843.
Berberian. M., 1976, "Contribution to the seismotectonics of Iran (part 2)". [J], Rep. Geol. Surv. Iran, No: 39, 516 p.
Baumbach, M., Bindi, D. Grosser, H. Milkereit, C. Parolai, S. Wang, R. Karakisa, S. Zünbül., S. Zschau, J., 2003, Calibration of an ML Scale in Northwestern Turkey from 1999 Izmit Aftershocks, Bull. Seismol. Soc. Am., Vol: 93, p: 2289–2295.
González, M., Vidal., A. Mungía, L., 2006, An ML Scale for the La Paz–Los CabosRegion, Baja California Sur, México, Bull. Seismol. Soc. Am., Vol: 96, p: 1296-1304.
Havskov. J., Ottemöller. L., 2005, SEISAN: the earthquake analysis software, version 8.1.
Hutton. L.K., Boore. D.M., 1987, The ML scale in southern California, Bull. Seismol. Soc. Am., Vol: 77, p: 2074–2094.
Rezapour. M. and Rezaei. R., 2011, Empirical Distance Attenuation and the Local Magnitude Scale for Northwest Iran, Bull. Seismol. Soc. Am., Vol: 101, p:3020–3031.
Richter, C.F., 1935. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 25, 1-32.
Shoja-Taheri. J., Naserieh. S. Ghofrani. H., 2007, ML and MW Scales in the Iranian Plateau Based on the Strong-Motion Records, Bull. Seismol. Soc. Am., Vol: 97, p: 661-669.