Geochemistry and genesis of apatite ـ bearing magnetite ـ specularite orebody in Dehzaman iron deposit, Northeastern Kashmar ـ Kerman tectonic zone

Authors

1 Ph.D. student, Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Dehzaman iron deposit is located in Khorasan Razavi province and northeastern Kashmar ـ Kerman tectonic zone. Geology of the area includes late ـ Neoproterozoic metamorphosed volcano ـ sedimentary rocks and lower Cambrian granitic intrusion. Hosted metarhyolite ـ metarhyodacite rock is formed in the subduction zone. Mineralization occurs as vein ـ veinlet, massive, disseminated, and breccia. Primary minerals are magnetite, specularite, apatite, and minor chalcopyrite and secondary minerals are malachite and hematite. Gangue minerals are chlorite, calcite, quartz, biotite ± tourmaline. Magnetites have a high concentration of REE and show a strong to the moderate enrichment of LREE related to HREE. The apatite ـ bearing magnetite ـ specularite mineralization is similar in the aspects of mineralogy, texture, alteration, host rock lithology, and magnetite chemistry to the Kiruna ـ type deposits and has the hydrothermal origin. This part of Kashmar ـ Kerman tectonic zone has good potential for Kiruna ـ type deposits and should be designed detailed exploration schedules for it.
 

Keywords

Main Subjects


ایمان­پور. ب.، کریم­پور. م.ح.، ملکزاده شفارودی. الف.، 1395، بررسی کانه­زایی و ژئوشیمی کانسار آهن ده­زمان، (جنوب غرب بردسکن) و مقایسه آن با کانسارهای آهن نواری، مجله بلورشناسی و کانی­شناسی ایران، شماره 4 (24)، ص 625 ـ 638.
حاجی میرزاجان. ح.، ملکزاده شفارودی. الف.، همام. س.م، حیدریان شهری. م.ر؛ 1396، تعیین مدل کانه­زایی مگنتیت ـ  اسپکیولاریت در کانسار آهن ده­زمان، استان خراسان رضوی: کانی­شناسی، ساخت و بافت و آلتراسیون، مجله بلورشناسی و کانی­شناسی ایران، در حال چاپ.
سهندی. م.، قاسمی. م.ر.، اختیارآبادی. ی.، 1389، نقشه 1:100000 قاسم آباد، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
شعبانی. س.، کریم­پور. م.ح.، ملکزاده شفارودی. الف.، 1395، مطالعات کانی­شناختی و ژئوشیمیایی در کانسار آهن دلکن، استان­خراسان­رضوی، هشتمین همایش انجمن زمین­شناسی اقتصادی ایران، دانشگاه زنجان.
ملکزاده شفارودی. الف.، کریم­پور. م.ح.، 1394، کانی‌سازی و مطالعات سیالات درگیر کانسار اکسید آهن ـ  آپاتیت خانلق، شمال­شرقی ایران، مجله زمین­شناسی کاربردی پیشرفته، شماره 5 (17)، ص 59 ـ 71.
نوزعیم. ر.، محجل. م.، یساقی. ع.، نصرآبادی. م.،  1393، تحلیل ساختاری و تعیین شرایط دگرشکلی پهنه برشی کوه سرهنگی در گرانیت ده زمان، شمال باختری بلوک لوت، مجله بلورشناسی و کانی­شناسی ایران، شماره1 (22)  15 ـ 26.
 
Azizi. H., Mehrabi. B., Akbarpour. A., 2009, Genesis of Tertiary magnetite–apatite deposits, southeast of Zanjan, Iran, Resource Geology, Vol: 59, No:4, p: 330–341.
Acosta ـ Gongora. P., Gleeson. S.A., Samson. I.M., Ootes. L., Corriveau. L., 2014, Trace Element Geochemistry of Magnetite and Its Relationship to Cu ـ Bi ـ Co ـ Au ـ Ag ـ U ـ W Mineralization in the Great Bear Magmatic Zone, NWT, Canada, Economic Geology, Vol. 109, p. 1901 ـ 1928.
Barton. M.D., Johnson. D.A., 1996, Evaporitic ـ source model for igneous ـ related Fe oxide ـ (REE–Cu–Au–U) mineralization, Geology, Vol. 24, p. 259–262.
Berzina. A., 2012, Platinum ـ group element geochemistry of magnetite from porphyry ـ Cu ـ Mo deposits and their host rocks (Siberia, Russia), Acta Geologica Sinica (English Edition), Vol. 86, No. 1, p. 106–117.
Boynton. W.V., 1985, Cosmochemistry of the rare earth elements, Meteorite studies, In: Henderson. P., (eds.) Rare Earth Element Geochemistry, (Developments in Geochemistry 2), Elsevier, Amesterdam, p. 115 ـ 1522.
Bonyadi. Z., Davidson. G.J., Mehrabi. B., Meffre. S., Ghazban. F., 2011, Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide– apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry, Chemical Geology, Vol. 281, p. 253–269.
Bookstrom. A.A., 1995, Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry: A discussion, Economic Geology, Vol. 90, p. 469–473.
Carew. M.J., Mark. G., Oliver. N.H.S., Pearson. N., 2006, Trace element geochemistry of magnetite and pyrite in Fe oxide (+/–Cu–Au) mineralized systems: Insights into the geochemistry of ore ـ forming fluid, Geochimica et Cosmochimica Acta, Vol. 70, No. 18, p. A83–A83.
Castor. S.B., Hedrick. J.B., 2006, Rare Earth Elements, In Kogel, J.E., Trivedi. N.C., Barker. J.M., Krukowski. S.T. (eds) Industrial Mineral Rocks, 7th edition, Society for mining, Metallurgy and Exploration, Littleton, Colorado, p. 769–792.
Chen. W.T., Zhou. M.F., Li. X., Gao. J.F., Hou. K., 2015, In ـ situ LA ـ ICP ـ MS trace elemental analyses of magnetite: Cu ـ (Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India, Ore Geology Reviews, Vol. 65, p. 929 ـ 939.
Daliran. F., Stosch. H.G., Williams. P., 2007, Multistage metasomatism and mineralization at hydrothermal Fe oxide ـ REE apatite deposits and “apatites” of the Bafq district, central east Iran, In: Stanely. C.J. et al. (ed.), Digging Deeper, Proceeding of 9th Biennial SGA Meeting Dublin, p. 1501–1504.
Daliran. F., Stosch. H.G., Williams. P., 2010, Lower Cambrian iron oxide–apatite ـ REE (U) deposits of the Bafq district, east ـ  Central Iran. In: Corriveau. L., Mumin. H., (eds.), Exploring for iron ـ oxide copper ـ gold deposits: Canada and global analogues. Québec: Geological Association of Canada and Geological Survey of Canada, p. 143–155.
Dare. S.A., Barnes. S.J., Beaudoin. G., Méric. J., Boutroy. E., Potvin–Doucet. C., 2014, Trace elements in magnetite as petrogenetic indicators, Mineral. Deposita, Vol. 49, p. 785–796.
Deer. W.A., Howie. R.A., Zussman. J., 1992, An introduction to the rock ـ forming minerals (2nd ed). New York: Longman, Harlow, Wiley, 696 p.
De Sitter. J., Govaert. A., De Grave. E., Chamaere. D., Robrecht. G., 1977, Mossbauer study of Ca2+ ـ containing magnetites, Physicochemical Status Solidification, Vol. 43(a), p. 619–624.
Dupuis. C., Beaudoin. G., 2011, Discriminate diagrams for iron oxide trace element fingerprinting of mineral deposit types, Mineralium Deposita, Vol. 46, No. 3, p. 1–17.
Frietsch. R., Perdahl. J.A., 1995, Rare earth elements in apatite and magnetite in Kiruna ـ type iron ores and some other iron ore types, Ore Geology Reviews, Vol. 9, p. 489–510.
Gandhi. S.S., Bell. R.T., 1996, Kiruna/Olympic Dam ـ type iron, copper, uranium, gold, silver. In: Eckstrand. O.R., Sinclair. W.D., Thorpe. R.I. (eds.), Geology of Canadian mineral deposit types. Québec: Geological Survey of Canada, p. 513–522.
Gosselin. P., Beaudoin. G., Jébrak. M., 2006, Application of the Geochemical Signature of Iron Oxides to Mineral Exploration, GAC–MAC Annual Meeting Prog.
Groves. D.I., Bierlein. F.P., Meinert. L.D., Hitzman. M.W., 2010, Iron Oxide Copper ـ Gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits, Economic Geology, Vol. 105, p. 641–654.
Hildebrand. R.S., 1986, Kiruna ـ type deposits: their origin and relationship to intermediate subvolcanic plutons in the Great Bear Magmatic Zone, northwest Canada, Economic Geology, Vol. 81, p. 640–659.
Klein. C., 2005, Some Precambrian banded iron ـ formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins, American Mineralogist, Vol. 90, p. 1473–1499.
Kolker. A., 1982, Mineralogy and geochemistry of Fe–Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis, Economic Geology, Vol. 77, p. 1146–1158.
Liang. H.Y., Sun. W., Su. W.C., Zartman. R.E., 2009, Porphyry copper–goldmineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration, Economic Geology, Vol. 104, p. 587–596.
Liu. P.P., Zhou. M.F., Chen. W.T., Gao. J.F., Huang. X.W., 2015, In ـ situ LA ـ ICP ـ MS trace elemental analyses of magnetite: Fe ـ Ti ـ (V) oxide ـ bearing mafic ـ ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China, Ore Geology Reviews, Vol. 65, p. 853–871.
Loberg. B.E.H., Horndahl. A.K., 1983, Ferride geochemistry of Swedish Precambrian iron ore, Mineralium Deposita, Vol. 48, p. 487–504.
Makvandi. Sh., Ghasemzadeh ـ Barvarz. M., Beaudoin. G., Grunsky. E.C., McClenaghan. M.B., Duchesne. C., Boutroy. E., 2016, Partial least squares ـ discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration, Ore Geology Reviews, Vol. 78, p. 388 ـ 408.
Mark. G., Foster. D.R.W., 2000, Magmatic albite–actinolite–apatite rich rocks from the Cloncurry district, Northwest Queensland, Australian, Lithos, Vol. 51, p. 223–245.
Mokhtari. M.A.A., Hosseinzadeh. G., Emami. M.H., 2013, Genesis of iron ـ apatite ores in Posht ـ e ـ Badam Block (Central Iran) using REE geochemistry, Journal of Earth System Science, Vol. 122, No. 3, p. 795–807.
Mollo. S., Putirka. K., Iezzi. G., Scarlato. P., 2013, The control of cooling rate on titanomagnetite composition: implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano, Contribiution to Mineralogy and Petrology, Vol. 165, p. 457–475.
Nabatian. G., Ghaderi. M., 2013, Oxygen isotope and fluid inclusion study of the Sorkhe ـ Dizaj iron oxide ـ apatite deposit, NW Iran, International Geology Reviews, Vol:  55, No: 4, p: 397–410.
Nabatian. G., Ghaderi. M., Daliran. F., Rashidnejad ـ Omran. N., 2012, Sorkhe ـ Dizaj Iron Oxide–Apatite Ore Deposit in the Cenozoic Alborz ـ Azarbaijan Magmatic Belt, NW Iran, Resource Geology, Vol: 63, No: 1, p: 42–56.
Nabatian. Gh., Rastad. E., Neubauer. M., Honarmand. M., Ghaderi. M., 2015, Iron and Fe ـ Mn mineralization in Iran: implication for Tethyan metallogeny, Australian Jurnal of Earth Sciences, Vol. 62, p. 211 ـ 241.
Nadoll. P., Mauk. J.L., Hayes. T.S., Koenig. A.E., Box. S.E., 2012, Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States, Economic Geology, Vol. 107, p. 1275–1292.
Nadoll. P., Angerer. T., Mauk. J.L., French. D., Walshe. J., 2014, The chemistry of hydrothermal magnetite: a review, Ore Geology Reviews, Vol. 16, p. 1–32.
Nyström. J.O., Henriquez. F., 1994, Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry, Economic Geology, Vol. 89, p. 820–839.
Parak. T., 1991, Volcanic sedimentary rock ـ related metallogenesis in the Kiruna–Skellefte belt of northern Sweden, Economic Geology Monograph, Vol. 8, p. 20–50.
Pearce. J.A., 1983, Role of the sub ـ continental lithosphere in magma genesis at active continental margins, In: Hawkesworth. C.J., Norry. M.J., (eds.) Continental Basalts and Mantle Xenoliths, Shiva, Nantwich, p. 230 ـ 249.
Ramezani. J., Tucker. R.D., 2003, The Saghand region, central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics, American Journal of Sciences, Vol. 303, p. 622–665.
Rollinson. H., 1993, Using geochemical data, Evaluation, Presentation, Interpretation, Harlow, UK, Longman, 352 p.
Rossetti. F., Nozaem. R., Lucci. F., Vignaroli. G., Gerdes. A.,  Nasrabadi. M., Theye. T., 2014, Tectonic setting and geochronology of the Cadomian (Ediacaran ـ Cambrian) magmatism in Central Iran, Kuh ـ e ـ Sarhangi region (NW Lut Block), Journal of Asian Earth Sciences, Vol. 102, p. 24 ـ 44.
Rusk. B.G., Oliver. N.H.S., Zhang. D., Brown. A., Lilly. R., Jungmann. D., 2009, Compositions of magnetite and sulfides from barren and mineralized IOCG deposits in the eastern succession of the Mt Isa Inlier, Townsville: Australia Society for Geology Applied to Mineral Deposits, 10th Bi ـ ennial SGA Meeting, p. 656–658.
Sillitoe. R.H., Burrows. D.R., 2002, New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile, Economic Geology, Vol. 97, p. 1101–1109.
Singoyi. B., Danyushevsky. L., Davidson. G., Large. R., Zaw. K., 2006, Determination of trace elements inmagnetites from hydrothermal deposits using the LA–ICP ـ MS technique. SEG Keystone Conference, Denver, USA CD ـ ROM.
Stocklin. J., 1968, Structural history and tectonics of Iran: A review, American Association of Petrology and Geology Bulletin, Vol. 52, p. 1229–1258.
Sun. S.S., McDonough. W.F., 1989, Chemical and isotopy systematics of oceanic basalts: implications for mantle composition and processes, In: Magmatism in the Ocean: Basins, The Geological Society of London, special publication, Vol. 42.
Whitney. D.L., Evans. B.W., 2010, Abbreviations for names of rock ـ forming minerals, American Mineralogist, Vol. 95, p. 185–187.
Wilson. M., 1989, Igneous Petrogenesis, Uniwin Hyman, London.
Wood. D.A., 1980, The application of a Th ـ Hf ـ Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province, Earth Planetary Science Letter, Vol. 50, p. 11– 30.
Xiaowen. H., Liang. Q., Yumiao. M., 2014, Trace element geochemistry of magnetite from the Fe( ـ Cu) deposits in the Hami region, eastern Tianshan orogenic belt, NW China, Acta Geologica Sinica (English Edition), Vol. 88, No. 1, p. 176–195.
Zarei. A.,Malekzadeh Shafaroudi. A., Karimpour. M.H., 2015, Geochemistry and genesis of iron ـ apatite ore in Khanlogh deposit, Eastern Cenozoic Quchan ـ Sabzevar magmatic arc, NE Iran, Acta Geologica Sinica (English Edition), Vol. 88, No. 4, p. 1195 ـ 1213.
Zhang. D., Rusk. B., Oliver. N., Dai. T., 2011, Trace element geochemistry of magnetite from the Ernest Henry IOCG deposit, Australia, 11th biennial meeting SGA 2011 ـ Let s talk ore deposits, Antofagasta, Chile.