Geothermometry of Zirconium in Rutil- bearing Quartz Veins, Surian Volcano-Sedimentary Complex


Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz


    Temperature sensitive elements such as high field strength elements (HFSEs) are valuable for calculation of temperature in the particular geologic systems. Experiments show that the metamorphic temperature is significantly correlated with the concentration of Zr in the rutile mineral. Based on Electron Probe Micro-Analysis (EPMA), this research focuses on the rutile geothermometry in quartz veins during the metamorphism process (ca. 187 Ma) in the Mazayjan and Dideh-Banki regions within the Surian volcano-sedimentary complex. The Zr-in-rutile geothermometer calculated with three different equations. Calculations indicate that the maximum metamorphic temperature occurred in the range of 640 to 690°C at the pressure of 9.5 kbar. These values are consistent with the prograde metamorphic event during the early Cimmerian discordance recorded the onset of the compression and related to the peak of metamorphism (amphibolite facies) in the southern margin of Sanandaj–Sirjan metamorphic belt. The results reveal that the thermal gradient decrease gradually from southeast (Mazayjan) toward northwest (Dideh-Banki) of the surian complex.


سامانی، ب.، فقیه، ع.، چرچی، ع.، 1391، بررسی الگوی دگرشکلی با استفاده از تحلیل استرین نهایی و عدد تاوایی جنبش­شناختی در پهنه دگرشکل­شده چشمه­سفید، کمربند دگرگونی سنندج-سیرجان،‎ ‎مجله زمین­شناسی کاربردی پیشرفته، شماره5، ص 20-‏‏26.
مُر، ف.، اسدی، س.، فتاحی، ن.، 1390، زمین­شیمی و زمین­دماسنجی کانسار مس جیان (بوانات)، زون سنندج- سیرجان، شمال شرق استان ‏فارس،‎ ‎مجله زمین شناسی کاربردی پیشرفته، شماره1، ص 80-‏‏92.
Asadi, S., Moore. F., Fattahi, N., 2013, Fluid inclusion and stable isotope constraints on the ‎genesis of the Jian Cu deposit, Sanandaj-Sirjan metamorphic zone, Iran: Geofluids, v. 13, ‎p. 66 – 81.‎
Baldwin, J.A., Brown, M., 2008, Age and duration of ultrahigh-temperature metamorphism in ‎the Anapolis–Itaucu Complex, Southern Brasilia Belt, central Brazil —constraints from ‎U–Pb geochronology, mineral rare earth element chemistry and trace-element ‎thermometry: Journal of Metamorphic Geology, v. 26, p. 213–233.‎
Bromiley, G.D., Hilairet, N., McCammon, C., 2004, Solubility of hydrogen and ferric iron in ‎rutile and TiO2 (II): implications for phase assemblages during ultrahigh pressure ‎metamorphism and for the stability of silica polymorphs in the lower mantle: ‎Geophysical Research Letters v. 31, p. 10–46. ‎
Chen, Z.Y., Li, Q.L., 2008, Zr-in-rutile thermometry in eclogite at Jinheqiao in the Dabie ‎orogen and its geochemical implications. Chinese: Science Bulletin, v. 53, p. 768–776.‎
El Goresy, A., 1971, Meteoritic rutile: a niobium bearing mineral: Earth and Planetary Science ‎Letters, v. 11, p. 359–361.‎
El Goresy, A., Chen, M., Gillet, P., Dubrovinsky, L., Graup, G., 2001, An natural ‎shockinduced dense polymorph of rutile with PbO2 structure in the suevite from the Ries ‎Crater in Germany: Earth and Planetary Science Letters, v. 192, p. 485–495.‎
Fazlnia, A. N., Schenk, V., Van der Straaten, F., Mirmohammadi, M. S., 2009, Petrology, ‎geochemistry and geochronology of trondhjemites from the Qori Complex, Neyriz, Iran: ‎Lithos, v. 112, p. 413-433.‎
Fazlnia, A., Moradian, A., Rezaei, K., Moazzen, M., and Alipour, S., 2007, Synchronous ‎Activity of Anorthositic and S-type Granitic Magmas in Chah-Dozdan Batholith, Neyriz, ‎Iran: Evidence of Zircon SHRIMP and Monazite CHIME Dating: Journal of Sciences, ‎Islamic Republic of Iran, v. 18, p. 221-237.‎
Foley, S.F., Barth, M.G., Jenner, G.A., 2000, Rutile/melt partition coefficients for trace ‎elements and an assessment of the influence of rutile on the trace element characteristics ‎of subduction zone magmas: Geochimica et Cosmochimica Acta, v. 64‎‏,‏‎ p. 933–938‎
Harley, S.L., 2008, Refining the P–T records of UHT crustal metamorphism: Journal of ‎Metamorphic Geology, v. 26, p. 125–154.‎
Luvizotto, G.L., Zack, T., Triebold, S., von Eynatten, H., 2009, Rutile occurrence and trace ‎element behavior in medium-grade metasedimentary rocks: example from the Erzgebirge, ‎Germany: Mineralogy and Petrology, v. 97, p. 233–249.‎
Meinhold, G., 2010, Rutile and its applications in earth sciences: Earth-Science Reviews, v. ‎‎102, p. 1–28‎
Miller, C., Zanetti, A., Thöni, M., Konzett, J., 2007, Eclogitisation of gabbroic rocks: ‎redistribution of trace elements and Zr in rutile thermometry in an Eo–Alpine subduction ‎zone (Eastern Alps):  Chemical Geology, v. 239, p. 96–123.‎
Mousivand, F., Rastad, E., Hoshino, K., Watanabe, M., 2007, The Bavanat Cu-Zn-Ag ‎orebody: First recognition of a Besshi-type VMS deposit in Iran: Neues Jahrbuch für ‎Mineralogie- Abhandlungen, v. 183, p. 297–315.‎
Mousivand, F., Rastad, E., Meffre, S., Jan, P., Solomon. M., Zaw, Kh, 2010, U-Pb ‎geochronology and Pb isotope characteristics of the Chahgaz volcanogenic massive ‎sulphide deposit, southern Iran.  International: Geology Review, v. 1, p. 1-24.‎
Rudnick, R.L., Barth, M., Horn, I., McDonough, W.F., 2000, Rutile-bearing refractory ‎eclogites: missing link between continents and depleted mantle: Science, v. 287, p. 278–‎‎281.‎
Shannon, R.D., 1976, Revised effective ionic radii and systematic studies of interatomic ‎distances in halides and chalcogenides: Acta Crystallographica, v. A32, p. 751–767.‎
Sheikholeslami, M.R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H., Emami, M. H., 2008, ‎Tectono metamorphic evolution of the Neyriz metamorphic complex, Quri-Kor-e-Sefid ‎area, Sanandaj-Sirjan Zone, SW Iran: Journal of Asian Earth Sciences, v. 31, p. 504–521. ‎
Tomkins, H.S., Powell, R., Ellis, D.J., 2007, the pressure dependence of the zirconium-in rutile ‎thermometer: Journal of Metamorphic Geology, v. 25, p. 703–713.‎
Triebold, S., von Eynatten, H., Luvizotto, G.L., Zack, T., 2007, Deducing source rock ‎lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany: ‎Chemical Geology, v. 244, p. 421–436.‎
Villaseca, C., Orejana, D., Paterson, B.A., 2007, Zr–LREE rich minerals in residual ‎peraluminous granulites, another factor in the origin of low Zr–LREE granitic melts: ‎Lithos, v. 96, p. 375–386.‎
Watson, E.B., Wark, D.A., Thomas, J.B., 2006, Crystallization thermometers for zircon and ‎rutile: Contributions to Mineralogy and Petrology, v. 151, p. 413–433.‎
Zack, T., Kronz, A., Foley, S.F., Rivers, T., 2002, Trace element abundances in rutiles from ‎eclogites and associated garnet mica schists: Chemical Geology, v. 184, p. 97–122.‎
Zack, T., Luvizotto, G.L., 2006. Application of rutile thermometry to eclogites: Mineralogy ‎and Petrology, v. 88, p. 69–85.‎
Zack, T., Moraes, R., Kronz, A., 2004. Temperature dependence of Zr in rutile: empirical ‎calibration of a rutile thermometer: Contributions to Mineralogy and Petrology, v. 148, p. ‎‎471–488.‎