Source of Kandovan Volcanic Rocks (NW of Iran):Using New Data of Geology, Petrograghy and Geochemistry


1 Research Institute of Earth Sciences, Geological Survey of Iran, Tehran, Iran

2 Research Institute for Earth Science, Geological Survey of Iran, Tehran, Iran

3 Geological Survey of Iran, Tehran, Iran


The study area is located in the Eastern Azarbayjan. The area is dominated by sequences of lavas and pyroclastic materials that viewed in the six units in the east of the Kandovan village. Based on  petrographical  studies, rocks consist of plagioclase and hornblende that are in a fine grained and glassy ground mass, and also there are lithic and pumice in the pyroclastic rocks. Sieve texture, normal and oscillatory zoning in the plagioclases are characteristic features of the studied rocks. High LREE/HREE ratios, enrichment of LILE and strong depletion of HREE and Y are geochemical characterizes and are implying of adakitic nature for them. The studied rocks because of MgO< 0/8 and SiO2> 66/16 are classified as high SiO2 adakites. Based on Nb/Ta<16 in the Kandovan volcanic rocks; can suggest that these rocks are formed from crustal garnet-amphibolite source rock with no high pressure. With knowing the old eruption characterizes, can predict future eruptions that it helps to reduce of injuries.


آقانباتی، ع.، 1383، زمین­شناسی ایران. سازمان زمین­شناسی و اکتشافات معدنی کشور، 640 صفحه.
پیرمحمدی، ف.، عامری، ع.، جهانگیری، الف.، مجتهدی، م.، هاواچن، چ.، کسکین، م.، a1390، کانی­شناسی، سنگ­شناسی و سنگ زایی مجموعه آتشفشانی سهند، شمال­غرب ایران، مجله بلورشناسی و کانی­شناسی ایران، شماره1، ص83-102.
پیرمحمدی، ف.، عامری، ع.، جهانگیری، الف.، هاواچن، چ.، کسکین، م.، b1390، بررسی منشأ و محیط زمین­ساختی سنگ­های آتشفشانی خاور سهند (جنوب­خاور تبریز) با استفاده از شواهد ژئوشیمیایی، مجله علوم زمین، شماره 81، ص 179- 190.
جهانگیری، الف.، اشرفی، ن.، 1385، تحول فرآیندهای آتشفشانی سهند از فراتوماگمایی به نوع استرومبولی براساس مطالعه پیروکلاستیک­ها، بیست و پنجمین گردهمایی علوم زمین، سازمان زمین­شناسی و اکتشافات معدنی کشور، بخش سنگ­شناسی و کانی­شناسی.
غیوری خسرقی، ن.، 1381، مطالعه چینه شناسی، پتروگرافی و ژئوشیمیایی افق­های ایگنمبریتی سهند، پایان­نامه کارشناسی ارشد، دانشگاه تربیت معلم تهران، 147 صفحه.
معین­وزیری، ح.، امین­سبحانی، الف.، 1356، سهند از نظر ولکانولوژی و ولکانوسدیمنتری، انتشارات دانشگاه تربیت معلم، 59 صفحه.
Castillo, P.R., 2006, An overview of adakite petrogenesis, Chinese Science Bulletin, Vol. 51, p: 257-268.
Chiu, H.Y., Chung, S.L., Zarinkoub, M.H.m Mohammadi, S.S., Khatib, M.M., Iizuka, Y., 2013,  Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan sunbuction and Zagros orogeny. Lithos, Vol. 162, p: 70- 87.
Defant, M.J., Durmmond, M.S., 1990, Derivation of some modern arc magmas by melting of young subduction lithosphere, Nature, Vol. 347, p: 662- 665.
Defant M.J., Drummond, M.S., 1993, Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc,Geology, Vol. 21, p: 547–550.
Dilek, Y., Imamverdiyev, N.A. and Altunkaynak, S., 2009, Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint, International Geology Review, Vol. 52, p: 536-578.
Eyuboglu, Y., Santosh, M., Chung, S.L., 2011. Crystal fractionation of adakitic magmas in the crust–mantle transition zone: petrology, geochemistry and U–Pb zircon chronology of the Seme adakites, eastern, Pontides, NE Turkey. Lithos, Vol. 121, p: 151–166.
Gao, Y., Hou, Z., Kamber, B.S., Wei, R., Meng, X., Zhao, R., 2007. Adakite-like porphyric from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contrib Mineral Petrol, Vol. 153, p: 105-120.
Gill, R., 2010, Igneous rocks and processes, A John Wiley and  Sons, Ltd., Publication, 428 pages.
Guo, Z., Wilson, M., Liu., J., 2007. Post-collision adakites in south Tibet: Products of partial melting of subductin0modified lower crust. Lithos, Vol. 96, p: 205-224,
Imamverdiyev, N.A. and Mamedov, M.N., 1996, Neogene-Quaternary volcanism in the Lesser Caucasus, Azerbaijan, Acta Volcanologica, Vol. 8, p: 111-113.
John, T., Klemd, R., Klemme, S., Pfander, J.A., Hoffmann, J.E., Gao, J., 2011, Nb–Ta fractionation by partial melting at the titanite–rutile Transition, Contrib Mineral Petrol, Vol. 161, p: 35-45. 
Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Kandemir, R., Wijbrans, J., 2010, Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination, Lithos, Vol. 114, p: 109-120.
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, 1986, A chemical classification of volcanic rocks based on total Alkali-Silica contant, Journal of Petrology, Vol. 27, p: 745-750.
Le Maitre, R.W., 2002, Igneous rocks: a classification and glossary of terms, Cambridge University Press. 236 pages.
Martin, H., 1999, Adakitic magmas: modern analogues of Archean granitoids, Lithos, Vol. 46, p: 411-429.
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., 2005, An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution, Lithos, Vol. 79, p: 1-24.
Moyen, J.F., 2009, High Sr/Y and La/Yb ratios: The meaning of the adakitic signature, Lithos, Vol. 112, p: 556-574.
Rodriguez, C., Selles, D., Dungan, M., Langmuir, C., Leeman, W., 2007. Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longav volcano (36.2 degrees S; Andean Southern Volcanic Zone, central Chile). Journal of Petrology, Vol. 48, p: 2033–2061.
Rollinson, H.R., 1993, Using Geochemical Data: Evaluation, Presentation, Interpretation, Longmans, Harlow, 325 pages.
Rudnick, R.L., 1990, Nd and Sr isotopic compositions of lower crustal xenoliths from north Queensland, Australia: Implications for Nd model ages and crustal growth processes, Chemical Geology, Vol. 83, p: 195-208.
Sun, S.S., Mcdonough, W.E., 1989, Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes, Magmatism in the ocean Basins. Ed. Sunders A.D., Norry M.J. Geologycal Society of London Special Publication, Vol. 42, p: 313-345.
Veliev, A.A., GasanKuliyeva, M.Y., Imamverdiyev, N.A., Babayeva, G.J., 2010, Petrogenetic evolution late Cenozoic volcanism of the Lesser Caucasus, The 1st International Applied Geological Congress, Department of Geology, Islamic Azad University-Mashhad Branch, Iran, 2159-2167.
Winter, J.D., 2001, An Introduction to Igneous and Metamorphic Petrology, Prentice- hall inc. upper Saddle River, New Jersey, 697 pages.