Mineralization and Fluid Inclusion Studies of the Khanlogh Iron Oxide-Apatite Deposit, Northeast of Iran

Authors

Research Center for Ore Deposit of Eastern Iran, Ferdowsi University of Mashhad, Iran

Abstract

     The Khanlogh iron oxide-apatite deposit is located in northwest of Nyshabour within the eastern part of Quchan-Sabzevar magmatic belt. It is hosted in Oligocene quartzmonzy odiorite and granodiorite intrusions. Mineralization occurs as vein, veinlets, and minor berrecia. Mineralogy is magnetite and apatite associated with calcite, quartz, epidote, pyroxene, and chlorite. Based on fluid inclusion studies in apatite, two types of fluid have role in formation of deposit: 1) high-temperature and high-salinity fluid with magmatic nature and 2) moderate-temperature and low-salinity NaCl-, MgCl2-, and CaCl2-bearing fluid. The mixing of hot and brine magmatic ore fluid with cold and low salinity fluid associated with boiling can be casued elements deposition. The deposit is derived from a magmatic-hydrothermal source and is related to Tertiary magmatic activity resulted from subduction of the Sabzevar Neo-Tethyan oceanic lithosphere beneath the Turan plate. Knowledge of the Khanlogh magnetite-apatite deposit, which is the first explorated Kiruna-type mineralization in northeast of Iran, is positive step for exploration of this type of deposit in NE Iran.
 
 

Keywords


زارعی. الف.، ملک زاده شفارودی. الف.، کریم­پور. م.ح.، 1395، کانسار مگنتیت- آپاتیت خانلق، شمال غربی نیشابور: کانی­شناسی، ساخت و بافت، آلتراسیون و تعیین مدل، مجله بلورشناسی و کانی­شناسی ایران، در حال چاپ.
قائمی. ف.، قائمی. ف.، حسینی. ک.، 1378، نقشه زمین­شناسی 1:100000 نیشابور، سازمان زمین­شناسی و اکتشافات معدنی کشور.
لطیفی ساعی. ف.، میرنژاد. ح.، علی پور اصل. م.، نیرومند. ش.، 1393، بررسی کانه­زایی طلا در سامانه رگه­ای دره­زار در منطقه پاریز (استان کرمان) با تاکید بر مطالعات میانبارهای سیال و ایزوتوپ­های گوگرد، مجله زمین­شناسی کاربردی پیشرفته، شماره 14، ص 65-75.
ملکزاده شفارودی. م.، کریم­پور. م.ح.، 1391، زمین­شناسی، کانی­سازی و مطالعات سیالات درگیر کانسار سرب- روی- مس حوض رئیس، شرق ایران، مجله زمین­شناسی کاربردی پیشرفته، شماره 6، ص 63-73.
Alavi. M., 1991, Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran, Geological Society of American Bullitan, Vol: 103, p: 983–992.
Azizi. H., Mehrabi. B., Akbarpour. A., 2009, Genesis of Tertiary magnetite–apatite deposits, southeast of Zanjan, Iran, Resource Geology, Vol: 59, No:4, p: 330–341.
Barton. M.D., Johnson. D.A., 1996, Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization, Geology, Vol: 24, p: 259–262.
Bauman. A., Spies. O., Lensch. G., 1983, Strontium isotopic composition of post-ophiolithic tertiary volcanics between Kashmar, Sabzevar and Quchan NE Iran, In: Almassi. A., (eds.), Geodynamic project (geotraverse) in Iran. Geological Survey of Iran, Tehran, p: 267-276.
Bonyadi. Z., Davidson. G.J., Mehrabi. B., Meffre. S., Ghazban. F., 2011, Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide– apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry, Chemical Geology, Vol: 281, p: 253–269.
Broman. C., Nystrom. J., Henriquez. F., Elfman. M., 1999, Fluid inclusion in magnetite-apatite ore from a cooling magmatic system at El Laco, Chile, Garuda Frequent Flyer, Vol: 121, p: 253–267.
Daliran. F., 2002, Kiruna-type iron oxide–apatite ores and apatites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. In: Porter. T.M. (eds.), Hydrothermal iron oxide copper-gold and related deposits. Adelaide, PGC Publishing, p: 303–320.
Daliran. F., Stosch. H.G., Williams. P., 2007, Multistage metasomatism and mineralization at hydrothermal Fe oxide-REE apatite deposits and “apatites” of the Bafq district, central east Iran. In: Stanely. C.J. et al. (eds.), Digging Deeper, Proceeding of 9th Biennial SGA Meeting Dublin, p: 1501–1504.
Daliran. F., Stosch. H.G. Williams. P., 2010, Lower Cambrian iron oxide–apatite-REE (U) deposits of the Bafq district, east- Central Iran. In: Corriveau. L. Mumin. H. (eds.), Exploring for iron-oxide copper-gold deposits: Canada and global analogues. Québec: Geological Association of Canada and Geological Survey of Canada, p: 143–155.
Davidson. G.J., Paterson. H., Meffre. S., Berry. R.F., 2007, Characteristics and origin of the Oak Dam East breccia-hosted, iron oxide-Cu-U-(Au) deposit: Olympic Dam region, Gawler Craton, South Australia, Economic Geology, Vol: 102, p: 1471–1498.
Edfelt. A., 2007, The Tjårrojåkka apatite-iron and Cu(-Au) deposits, northern Sweden: Products of one ore forming event, Luleå, Luleå University of Technology. Unpublished Ph. D thesis.
Forster. H., Jafarzadeh. A., 1994, The Bafq mining district in Central Iran: a highly mineralized Infracambrian volcanic field, Economic Geology, Vol: 89, p: 1667–1721.
Frietsch. R., Perdahl. J.A., 1995, Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types, Ore Geology Reviews, Vol: 9, p: 489–510.
Fu. B., Williams. P.J., Oliver. N.H.S., Dong. G., Pollard. P.J., Mark. G., 2003, Fluid mixing versus unmixing as an ore-forming process in the Cloncurry Fe-oxide-Cu-Au district, NW Queensland, Australia: Evidence from fluid inclusions, Journal of Geochemical Exploration, Vol: 78, p: 617–622.
Gelcich. S., Davis. D.W., Spooner. E.T.C., 2005, Testing the apatite–magnetite geochronometer: U–Pb and 40Ar/39Ar geochronology of plutonic rocks, massive magnetite–apatite tabular bodies, and IOCG mineralization in northern Chile, Geochimica et Cosmochimica Acta, Vol: 69, p: 3367–3384.
Gleason. J.D., Marikos. M.A., Barton. M.D., Johnson. D.A., 2000, Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe–P– REE) systems, Geochimica et Cosmochimica Acta, Vol: 64, p: 1059–1068.
Harlov. D.E., Andersson. U.B., Förster. H.J., Nyström. J.O., Dulski. P., Broman. C., 2002, Apatite monazite relation in the Kiirunavaara magnetite-apatite ore, northern Sweden, Chemical Geology, Vol: 191, p: 47–72.
Hildebrand. R.S., 1986, Kiruna-type deposits: Their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada, Economic Geology, Vol: 81, p: 640–659.
Hitzman. M.W., 2000, Iron oxide-Cu-Au deposits: what, where, when and why. In: Porter. T.M., (eds.), Hydrothermal iron oxide copper-gold and related deposits. A Global Perspective, Adelaide: Australian Mineral Foundation, p: 9–25.
Hitzman. M.W., Oreskes. N., Einaudi. M.T., 1992, Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-LREE) deposits, Precambrian Research, Vol: 58, p: 241–287.
Hou. T., Zhang. Z., Kusky. T., 2011, Gushan magnetite– apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type?, Ore Geology Reviews, Vol: 43, p: 333–346.
Jami. M., Dunlop. A.C., Cohen. D.R., 2007, Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran, Economic Geology, Vol: 102, p: 1111–1128.
Lecumberri-Sanchez. P., Steel-MacInnis. M., Bodnar. R.J., 2012, A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance, Geochim Cosmochim Acta, Vol: 92, p: 14-22.
Marschik. R., Fontboté. L., 2001, The Candelaria-Punta del Cobre iron oxide Cu-Au (-Zn-Ag) deposit, Chile, Economic Geology, Vol: 96, p: 1799–1826.
Martinsson. O., 2004, Geology and Metallogeny of the Northern Norrbotten Fe-Cu-Au Province, In:Allen. R.L., Martinsson. O., Weihed. P., (eds.), Svecofennian ore-forming environments, Volume 33: Volcanic-associated Zn-Cu-Au-Ag, intrusion-associated Cu-Au, sediment-hosted Pb-Zn, and magnetite-apatite deposits of Northern Sweden, Society of Economic Geologists, Guidebook Series, p: 131–148.
Mokhtari. M.A.A., Hosseinzadeh. G., Emami. M.H., 2013, Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry, Journal of Earth System and Sciences, Vol: 122, No: 3, p: 795–807.
Monteiro. L.V.S., Xavier. R.P., de Carvalho. E.R., Hitzman. M.W., Johnson. C.A., de Souza Filho. C.R., Torresi. I., 2008, Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajas Mineral Province, Brazil: paragenesis and stable isotope constraints, Mineralium Deposita, Vol: 43, p: 129–159.
Nabatian. G., Ghaderi. M., 2013, Oxygen isotope and fluid inclusion study of the Sorkhe-Dizaj iron oxide-apatite deposit, NW Iran, International Geology Reviews, Vol:  55, No: 4, p: 397–410.
Nabatian. G., Ghaderi. M., Daliran. F., Rashidnejad-Omran. N., 2012, Sorkhe-Dizaj Iron Oxide–Apatite Ore Deposit in the Cenozoic Alborz-Azarbaijan Magmatic Belt, NW Iran, Resource Geology, Vol: 63, No: 1, p: 42–56.
Naslund. H.R., Aguirre. R., Dobbs. F.M., Henriquez. F.J., Nyström. J.O., 2000, The origin, emplacement, and eruption of ore magmas. IX Congreso Geologico Chileno, Sociedad geológica de Chile, Vol: 2, p: 135–139.
Naslund. H.R., Henriquez. F., Nyström. J.O., Vivallo. W., Dobbs. F.M., 2002, Magmatic iron ores and associated mineralization: Examples from the Chilean high Andes and coastal cordillera, In:Porter. T.M., (eds.), Hydrothermal iron oxide copper-gold and related deposits: A global perspective, Volume 2: Adelaide, PGC Publishing, p: 207–226.
Nystrom. J.O., Billstrom. K., Henriquez. F., Fallick. A.E., Naslund. H.R., 2008, Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden, Garuda Frequent Flyer, Vol: 130, p: 177–188.
Nyström. J.O., Henriquez. F., 1994, Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry, Economic Geology, Vol: 89, p: 820–839.
Oreskes. N., Einaudi. M.T., 1990, Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia, Economic Geology, Vol: 85, p: 1–28.
Parak. T., 1984, On the magmatic origin of iron ores of the Kiruna type: Discussion, Economic Geology, Vol: 79, p: 1945–1949.
Pollard. P.J., 2001, Sodic(-calcic) alteration associated with Feoxide- Cu-Au deposits: An origin via unmixing of magmaticderived H2O-CO2-salt fluids, Mineralium Deposita, Vol: 36, p: 93–1 00.
Pollard. P.J., 2006, An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces, Mineralium Deposita, Vol: 41, p: 179–187.
Rieger. A.A., Marschik. R., Díaz. M., 2012, The evolution of the hydrothermal IOCG system in the Mantoverde district, northern Chile: New evidence from microthermometry and stable isotope geochemistry, Mineralium Deposita, Vol: 47, p: 359–369.
Rhodes. A.L., Oreskes. N., 1999, Oxygen isotope composition of magnetite deposits at EI Laco, Chile: Evidence of formation from isotopically heavy fluids, In:Skinner. B.J., (eds.), Geology and ore deposits of the central Andes, Volume 7: Society of Economic Geologists Special Publication, p: 333–351.
Rhodes. A.L., Oreskes. N., Sheets. S., 1999, Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile, In:Skinner. B.J., (eds.), Geology and ore deposits of the Central Andes, Volume 7: Society of Economic Geologists Special Publication, p: 299–332.
Roedder. E., 1984, Fluid inclusions, Reviews in Mineralogy, Vol: 12, 644 p.
Sheppherd. T.J., Rankin. A.H., Alderton. D.H.M., 1985, A Practical Guide to Fluid Inclusion Studies, Blackie and Son, 239 pp.
Skirrow. R.G., Bastrakov. E., Davidson. G., Raymond. O.L., Heithersay. P., 2002, The geological framework, distribution and controls of Fe-Oxide Cu-Au mineralisation in the Gawler Craton, South Australia. Part II: Alteration and mineralisation, In:Porter. T.M., (eds.), Hydrothermal iron oxide coppergold and related deposits: A global perspective, Volume 2: Adelaide, PGC Publishing, p: 33–47.
Spies. O., Lensch. G., Mihem. A., 1983, Chemisrty of the post-ophiolithic tertiary volcanic between Sabzevar and Quchan, NE Iran, In: Almassi. A., (eds.), Geodynamic project (geotraverse) in Iran. Geological Survey of Iran, Tehran, p: 247-266.
Steele-MacInnis. M., Lecumberri-Sanchez. P., Bodnar. R.J., 2012, HOKIEFLINCS-H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl, Computer in Geosciences, Vol: 49, p: 334–337.
Sillitoe. R.H., Burrows. D.R., 2002, New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile, Economic Geology, Vol: 97, p: 1101–1109.
Wanhainen. C., 2005, On the origin and evolution of the Palaeoproterozoic Aitik Cu-Au-Ag deposit, northernmSweden: A porphyry copper-gold ore, modified by multistage metamorphic-deformational, magmatic-hydrothermal, and IOCG-mineralizing events, Luleå, Luleå University of Technology. Unpublished Ph.D. thesis.
Whitney. D.L., Evans. B.W., 2010, Abbreviations for names of rock-forming minerals, American Mineralogist, Vol:  95, p: 185–187.
Williams. P.J., 2010, Classifying IOCG deposits. In: Corriveau. L. Mumin. H., (eds.), Exploring for iron-oxide copper gold deposits: Canada and global analogues, Québec:  Geological Association of Canada and Geological Survey of Canada, p: 11–19.
Williams. P.J., Barton. M.D., Fontboté. L., de Haller. A., Mark. G., Oliver. N.H.S., Marschik. R., 2005, Iron-oxide-copper gold deposits: geology, space-time distribution, and possible modes of origin. Society of Economic Geologists, Economic Geology 100th Anniversary Volume, Denver, p: 371–405.
Zarei. A., Malekzadeh Shafaroudi. A., Karimpour. M.H., 2015, Geochemistry and genesis of iron-apatite ore in Khanlogh deposit, Eastern Cenozoic Quchan-Sabzevar magmatic arc, NE Iran, Acta Geologica Sinica, in press.