زمین‌شناسی، کانه‌زائی و زمین‌شیمی کانسار مس هاشم‌آباد (جنوب نائین)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه کانی‌شناسی و اکتشافات معدنی کاربردی، پژوهشکده علوم زمین، تهران، ایران

2 کارشناس ارشد اکتشاف شرکت سامانه کانسار زمین، تهران

چکیده

کانسار مس هاشم‌آباد، در جنوب‌خاور استان اصفهان (نائین)، در پهنه ایران مرکزی و مجموعه‌ آتشفشانی منسوب به کرتاسه قراردارد. این سامانه، بخشی از توالی حوضه نائین-اردستان، به‌لحاظ زمین‌شناسی شامل گدازه‌های زیردریایی، آذرآواری-رسوبی و سنگهای اولترابازیک به‌سن کرتاسه فوقانی می‌باشند که در محیطی کششی تشکیل شده‌اند. این مجموعه در پهنه‌ای تکتونیزه (غالبا سامانه‌های گسلی امتدادلغز) در مجاورت کمان آتشفشانی ارومیه-دختر قرار دارند. عمده واحدهای دگرسان و تا حدودی دگرگون در این محدوده شامل گدازه‌های بازالتی، آندزیتی، آندزیت‌بازالتی، ریولیتی و نهشته‌های توفی با ترکیب ریولیتی کرتاسه میانی-فوقانی و توده‌های نیمه‌عمیق جوانتر می‌باشند که جایگیری آنها در ارتباط با گسل‌های امتدادلغز می‌باشد. در این بین، واحدهای آندزیت تا آندزیت بازالتی با بیشترین رخنمون میزبان اصلی کانه‌زایی مس میباشند. انواع دگرسانی‌های پروپیلیتیک، آرژیلیک، سریسیتی، سیلیسی، کربناتی و سولفیدی‌شدن قابل تشخیص هستند که اغلب در امتداد شکستگی‌ها توسعه بیشتری نشان می‌دهند. هرچند با نزدیک‌‌شدن به پهنه‌کانه‌دار بر شدت سیلیسی‌ و کربناتی‌شدن افزوده می‌شود. کانه‏زایی در این پهنه، عمدتا به‌صورت همخوان (دانه‌پراکنده و لنزی) با لایه‌بندی و در امتداد گسل‌های محلی و قطع‌کننده به‌صورت چینه‌کران تشکیل شده‌اند. ساخت و بافت‌ها شامل رگه-رگچه‌‌ای، پرکننده فضای‌خالی، دانه‌پراکنده و جانشینی و کانی‌های اصلی کالکوسیت، بورنیت، کالکوپیریت و پیریت و کانی‌های ثانویه کوولیت، کالکوسیت‌ثانویه، مالاکیت، هماتیت، گوتیت و آزوریت می‌باشند. مطالعات زمینشیمیایی، حاکی از پتانسیل بالای آن از نقطه‌نظر کانه‌زایی مس درحد غنی‌شده می‌باشد. با توجه به شواهد و پارامترهایی چون محیط‌تکتونیکی، سنگ‌میزبان، ساخت و بافت، کانی‌شناسی، دگرسانی، پاراژنز، ژئوشیمی و مقایسه آنها با ویژگی‌های ذخایر مس با میزبان آتشفشانی-رسوبی، این کانسار بیشترین شباهت را به کانسار‌های تیپ مانتو دارد.

کلیدواژه‌ها

موضوعات


Afroukhteh, A., 2014. Texture and structure and mineralogy of Pb- Zn mineralization at Paleozoic altered sequences, SW Naein. Ms.C thesis. University of Shahroud.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., Worlet, R., 2011. Zagros orogeny: a subduction- dominated process. Geological Magazine 148(5- 6), 692–725. https://doi.org/10.1017/S001675681100046X.
Abolipour, M., Rastad, E., Rashidnejad Omran, N., 2016. Stratabound manto type copper mineralization in pyrobitumen- bearing porphyry andesite, Kashkueieh Rafsanjan, Dehaj- Sardouieh subzone. Geosciences Scientific Quarterly Journal 95, 123- 144 (In Persian).
Alaei Mahabadi, S., Fodazi, M., 2004. Geological map of Naein area in 1:100000 scale. Geological Survey and Mineral Exploration of Iran (In Persian).
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics 229, 211–238. https://doi.org/10.1016/0040- 1951(94)90030- 2.
Allen, M.B., Armstrong, H.A., 2008. Arabia- Eurasia collision and the forcing of mid- Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 52- 58. https://doi.org/10.1016/j.palaeo.2008.04.021.
Alizadeh, V., Momenzadeh, M., Emami, M.H., 2013. Petrography, geochemistry, mineralogy, fluid inclusions and mineralisation study of Vorezg- Qayen copper deposit. Geosciences Scientific Quarterly Journal 22(86), 47- 58 (In Persian).
Almodaresi, S. A., Mohammadpour, M., 2014. Mn Anomaly investigation in Benvid region using processing of satellite images. The fourth National Conference on Application of Advanced Spartia Analysis Models (RS & GIS) in Landscape Planning (In Persian).
Aminoroayaei, M., Touti, F., Ahmadian, J., 2016. Hydrothermal alteration of porphyry copper deposit in southwestern of Zafarghand with respect to mineralogy and geochemical changes of region. Journal of Earth Science Researches 25, 75- 90 (In Persian).
Barnes, H.L. (Ed.). 1997. Geochemistry of hydrothermal ore deposits. John Wiley & Sons. P. 278–403.
Boric, R., Holmgren, C., Wilson, N.S.F., Zentilli, M., 2002. The geology of the El Soldado manto type Cu (Ag) deposit, central Chile. In Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, Volume 2; PGC Publishing, Adelaide, pp 185-205. https://www.geokniga.org/books/4896.
Bornhorst, T., Mathur, R., 2017. Copper Isotope Constraints on the Genesis of the Keweenaw Peninsula Native Copper District, Michigan, USA. Minerals 7(10), 185. https://doi.org/10.3390/min7100185.
Boveiri Konari, M., Rastad, E., Kojima, S., Rashidnejad Omran, N., 2013. Volcanic redbed- type copper mineralization in the Lower Cretaceous volcano- sedimentary sequence of the Keshtmahaki deposit, southern Sanandaj- Sirjan zone, Iran. Neues Jahrbuch für Mineralogie. 190(2), 107- 121. https://doi.org/10.1127/0077- 7757/2013/0236.
Boveiri Konari, M., Rastad, E., Rashidnejad Omran, N., 2009. Volcanic red bed type copper mineralization in Lower Cretaceous volcano- sedimentary sequence of NW- SE Dehbid, Fars Province. 27th National Geoscience Congress and 13th Conference of Iranian Society of Geology (In Persian).
Cabral, A.R., 2007. Volcanic Red Bed copper mineralization related to submarine basalt alteration, Mont Alexandre, Quebec Appalachians, Canada. Miner Deposita 42, 901-912. https://doi.org/10.1007/s00126-007-0141-7.
Cabral, A.R., Beaudoin, G., 2007. Volcanic red- bed copper mineralization related to submarine basalt alteration, Mont Alexandre, Quebec Appalachians, Canada. Mineralium Deposita 42, 901- 912. https://doi.org/10.1007/s00126- 007- 0141- 7.
Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separartion of geochemical anomalies from background by fractal methods. Journal of Geochemal Exploration 51, 109–130. https://doi.org/10.1016/0375- 6742(94)90013- 2
Dercourt, J., Zonenshain, L.P., Ricou, L.E., Kazmin, V.G., Le Pichon, X., Knipper, A.L., Grandjacquet, et al., 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics 123, 241- 315. https://doi.org/10.1016/0040- 1951(86)90199- x.
Ghasemi, A., Taghipour, B., Afshari, S., Cheraghi, S., 2004. Au correlation coefficient with Alunite in altered volcanic of Ghalehdar, SW of Esfahan (Urumieh–Dokhtar zone). Iranian Mining Engineering Conference, Tarbiat Modares University (In Persian).
Gholami Fesharaki, Z., Shamsipour Dehkordi, R., Vahabi Moghadam, B., Nasr Esfahani, A., 2011. Mineralography and source of Kachumesghal Cu deposit, SE Ardestan (Esfahan Province). 1st conference of Iranian Society of Economic Geology, Ferdowsi University (In Persian).
Grigorian, S.V., Ziaii, M., 1997, Computing methods for determination of geochemical haloes background, international symposium, Applied Geochemistry in CIS (in Russian).
Hassanipak, A.A., Sharafodin, M., 2012. Exploration data analysis. University of Tehran Press, 3rd edition, 1010p.
Hassanzadeh, J., Wernicke, B.P., 2016. The Neotethyan Sanandaj- Sirjan zone of Iran as an archetype for passive margin- arc transitions. Tectonics 35(3), 586- 621. https://doi.org/10.1002/2015tc003926.
Heidari, S.M., Afzal, P., Sadeghi, B., 2023. Miocene tectono- magmatic events and gold/poly- metal mineralizations in the Takab- Delijan belt, NW Iran. Geochemistry 83(1), 125944. https://doi.org/10.1016/j.chemer.2022.125944.
Hosseini Dinani, H., Bagheri, H., Shamsipour Dehkordi, R., 2012. Mineralization and geochemical studies in the Kalchouyeh occurrence, southwest of Naein. Journal of Economic Geology 4(2), 241- 256 (In Persian).
Jamali, H., 2016. Genetic model of volcanic- hosted Meskat Cu deposit in West Anaraque (Central Iran). 8st conference of Iranian Society of Economic Geology, Zanjan University (In Persian).
Karimzadeh Samarin, A., 2012. Applications of geochemical data, Tabriz University Publication, P. 75.
Kirkham, R.V., 1996. Volcanic redbed copper. In Eckstrand, O.R., Sinclair, W.D., Thorpe, R.I., (Eds.), Geology of Canadian Mineral Deposit Types: Geological Survey of Canada, Geology of Canada 8, 241- 252.
Komeili, S.S., Khalili, M., Asadi Haroni, H., Bagheri, H., Ayati, F., 2017. The nature of hydrothermal fluids in the Kahang porphyry copper deposit (northeast of Isfahan) based on mineralography, fluid inclusion and stable isotopic data. Economic Geology 8(2), 285–305. https://doi.org/10.22067/econg.v8i2.37178.
Lefebure, D.V., Church, B.N., 1996. Volcanic redbed. In: Lefebure, D.V., Hoy, T., (Eds.), Selected British Columbia Mineral Deposit Profles v.2 - Metallic Deposits. British Columbia Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch, XXX, Open File 1996- 13, 5- 7.
Li, X.H., Chung, S.L., Zhou, H.W., Lo, C.H., Liu, Y., Chen, C.H., 2003. Jurassic intraplate magmatism in southern Hunan- eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr- Nd isotopes and implications for tectonic evolution of SE China. Geological Society of London Special Publication. https://doi.org/10.1144/GSL.SP.2004.226.01.11.
Maksaev, V., Townley, B., Palacios, C., Camus, F., 2003. Metallic ore deposits. The Geology of Chile, 179-199. https://doi.org/10.1144/goch.6.
Maghfouri, S., Hosseinzadeh, M.R., Moayyed, M., Movahednia, M., Choulet, F., 2017. Geology, mineralization and sulfur isotopes geochemistry of the Mari Cu (Ag) Manto- type deposit, northern Zanjan, Iran. Ore Geology Reviews 81, 10- 22. https://doi.org/10.1016/j.oregeorev.2016.10.025.
Maghfouri, S., Rastad, E., Borg, G., Hosseinzadeh, M.R., Movahednia, M., Mahdavi, A., Mousivand, F., 2020. Metallogeny and temporal- spatial distribution of sediment-hosted stratabound copper (SSC- type) deposits in Iran; implications for future exploration. Ore Geology Reviews 127, 103834. https://doi.org/10.1016/j.oregeorev.2020.103834.
Mokhtari, A.R., Abdolmaleki, M., Akbar, S., 2013. Geochemical modeling of stream sediment samples by sample catchment basin approach. Iranian Journal of Mining Engineering 8(19), 67- 76.
Morley, C.K., Kongwung, B., Julapour, A., Abdolghafourian, M., Hajian, M., Waples, D., Warren, J., Otterdoom, H., Srisuriyon, K., Kazemi, H., 2009. Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in The Qom–Saveh area. Geosphere 5(4), 325–362. https://doi.org/10.1130/ges00223.1.
Movahednia, M., Maghfouri, S., Fazli, N., Rastad, E., Ghaderi, M., Gonzalez, F.J., 2022. Metallogeny of Manto- type stratabound Cu- (Ag) mineralization in Iran: Relationship with NeoTethyan evolution and implications for future exploration. Ore Geology Reviews 149, 105064. https://doi.org/10.1016/j.oregeorev.2022.105064.
Movahednia, M., Rastad, E., Rajabi, A., Maghfouri, S., Gonz´ alez, F.J., Alfonso, P., Choulet, F., Canet, C., 2020. The Ab- Bagh Late Jurassic- Early Cretaceous sedimenthosted Zn- Pb deposit, Sanandaj- Sirjan zone of Iran: Ore geology, fluid inclusions and (S- Sr) isotopes. Ore Geology Reviews 121, 103484.
Nabavi, M. H., Amidi, 1978. Geological map of Naein area in 1:250000 scale. Geological Survey and Mineral Exploration of Iran.
Oliveros, V., Feraud, G., Aguirre, L., Ramirez, L., Fornary, M., Palacios, C., 2008. Detailed 40Ar/39Ar dating of geologic events associated with the Mantos Blancos copper deposit, northern Chile. Mineralium Deposita 43(3), 281-293. https://doi.org/10.1007/s00126-007-0146-2.
Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide. Biomarkers and isotopes in petroleum exploration and earth history. University of Cambridge Press, Cambridge 2, 475- 1155.
Petersen, U., Vidal, C., 1996. Magmatic and tectonic controls on the nature and distribution of copper deposits in Perú. In: Andean copper deposits: new discoveries, mineralization styles and metallogeny (Edited by Camus, F., Sillitoe, R.H. and Petersen, R.). Society of Economic Geologists special publication 5, 1- 18. https://doi.org/10.5382/SP.05.01.
Punj, G.N., Stewart, D.W., 1983. Cluster analysis in marketing research: Review and suggestions for application. Journal of marketing research 20, 134- 148. https://doi.org/10.1177/002224378302000.
Ramírez, L., Palacios, C., Townley, B., Parada, M., Sial, A.N., Fernandez- Turiel, J.L., Gimeno, D., Garcia- Valles, M., Lehmann, B., 2006. The Mantos Blancos copper deposit: An Upper Jurassic breccia- style hydrothermal system in the Coastal Range of northern Chile. Mineralium Deposita 41(3), 246–258. https://doi.org/10.1007/s00126- 006- 0055- 9.
Sahandi, M.R., Delavar, S.T., Sadeghi, M., Jafari, E., Mousavi, S.E., 2006. Digital geology map of Iran, scale 1:1000,000. Geological Survey of Iran.
Salehi, L., Rasa, I., Alirezaei, S., Kazemi Mehrnia, A., 2016. The Madan Bozorg, volcanic- hosted copper deposit, East Shahroud: an example of Manto type copper deposits in Iran. Geosciences Scientific Quarterly Journal 25(98), 93- 104 (In Persian).
Samani, B., 2002. Metalogeny of Manto type copper deposits of Iran. 6th conference in geological society of Iran (In Persian).
Stöcklin, J., 1968, Structural history and tectonics of Iran: A review. American Association of Petroleum Geologists Bulletin 52, 1229- 1258. https://doi.org/10.1306/5D25C4A5- 16C1- 11D7- 8645000102C1865D.
Verdel, C., Wernicke, B.P., Hassanzadeh, J., Guest, B., 2011. A Paleogene extensional arc flare- up in Iran. Tectonics 30 (3), 1- 20. https://doi.org/10.1029/2010TC002809.
Waples, D.W., Curiale, J.A., 1999. Oil-oil and oil-source rock correlations. AAPG Treatise Petroleum Geology Handbook 92, 1- 71.
White, W.S., 1968. The native-copper deposits of northern Michigan. In Ridge, J.D., (Ed.), Ore Deposits of the United States, 1933-1967 (the Graton Sales volume): New York, American Institute of Mining, Metallurgical, and Petroleum Engineering, 303-325.
Wilton, D.H.C., Sinclair. A.J., 1988. Ore petrology and genesis of a strata-bound disseminated copper deposit at Sustut, British Columbia. Economic Geology 83(1), 30-45. https://doi.org/10.2113/gsecongeo.83.1.30.
Zandkhanian, A., 2017. Minealogy, geochemistry and genetic model of Darreh- Takht Cu deposit (south Azna- Lorestan province). Ms.C thesis, Shahroud University (In Persian with English abstract).