ارزیابی تأثیر هیدروژئولوژیک حفاری تونل انتقال آب طالقان بر آبدهی چشمه‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانش‌آموخته دکتری، گروه زمین‌شناسی کاربردی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران. کارشناس شرکت مهندسین مشاور فناوران طرح جامع

چکیده

پیش‌بینی نادرست کاهش آبدهی چشمه‌ها در اثر حفر تونل می‌تواند چالش‌های اجتماعی، فنی، اقتصادی و زیست‌محیطی ایجاد کند. ازاین‌رو، در این تحقیق تأثیر حفاری تونل انتقال آب طالقان - مقطع شرقی - بر چشمه‌های اطراف با روش‌های DHI و TIS بررسی شده است. مطالعه‌ای بر روی 23 چشمه اطراف تونل انجام شد. در روش DHI، متغیرهای مختلفی مانند فراوانی شکستگی، نفوذپذیری توده سنگ، ضخامت روباره، شعاع زون پلاستیک، برخورد با گسل‌های اصلی، نوع چشمه و فاصله چشمه از تونل در یک مدل کاملاً جفت شده ادغام شدند. همچنین مدل TIS بر اساس چهار پارامتر مهم شامل حجم آب ورودی به سمت تونل، فاصله چشمه و تونل، ارتباط هیدرولیکی و پتانسیل تغذیه آبخوان ادغام شد. نتایج نشان داد که بر اساس روش TIS هیچ منبع آبی به‌طور کامل خشک نخواهد شد، درحالی‌که در روش DHI، هفت چشمه در منطقه مورد مطالعه خشک خواهند شد. در کل، نتایج نشان می‌دهد که روش DHI شرایط بحرانی‌تری را نسبت به روش TIS در نظر می‌گیرد. درنهایت، با توجه به اهمیت پیش‌بینی تأثیر تونل بر منابع آبی اطراف، استفاده ترکیبی از روش‌های DHI و TIS پیش از حفاری تونل‌های انتقال آب پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


Berberian, M., Ghoreishi, M., Ravesh, B.A. Ashjaei, A.M., 1983. Seismotectonic and Earthquake Fault Hazard Investigations in the Tehran Region. Geological Survey of Iran 56.
Chen, Z., He, C., Zhang, Y., Xu, Z., Li, Z., Yu, B., 2023. The impact of formation heterogeneity on water discharge and groundwater depletion of an excavated tunnel. Journal of Hydrology 627, Part A, 130403. https://doi.org/10.1016/j.jhydrol.2023.130403.
Dematteis, A., Kalamaras, G., Eusebio, A., 2001. A system approach for evaluating springs drawdown due to tunneling -AITES-ITA 2001 World Tunnel Congress: Progress in tunnelling after 2000, 257-264. Milano, 10-13 June 2001.
Font-Capó, J., 2012. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels. PhD Thesis, Hydrogeology Group, (GHS) Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Dept Geotechnical Engineering and Geosciences, Universitat Politecnica de Catalunya, UPC-BarcelonaTech.
Gokdemir, C., Li, Y., Rubin, Y., Li, X., 2022. Stochastic modeling of groundwater drawdown response induced by tunnel drainage. Engineering Geology 297, 106529. https://doi.org/10.1016/j.enggeo.2022.106529.
Golian, M., Abolghasemi, M., Hosseini, A., Abbasi, M., 2021. Restoring groundwater levels after tunneling: a numerical simulation approach to tunnel sealing decision-making. Hydrogeology Journal 29, 1611–1628. https://10.1007/s10040-021-02315-1.
Hassanpour, J., Lotfipoor, A., Morsali, M., 2021. Introduction of an empirical classification system for evaluating tunneling impact on the discharge of springs (TIS) in the surrounding areas. Bulletin of Engineering Geology and the Environment 80(7), 5725-5742.‏ https://doi.org/10.1007/s10064-021-02268-5.
Houlsby, A.C., 1976. Routine interpretation of the Lugeon water-test. Quarterly Journal of Engineering Geology and Hydrogeology 9(4), 303-313.‏ https://doi.org/10.1144/GSL.QJEG.1976.009.04.03.
Leopold, L.B., Frank, E.C., Bruce, B.H., James, R.B., 1971. A procedure for evaluating environmental impact. U.S. Geological Survey Circular 645, Washington D.C., U.S. Dep. Of the Interior. https://doi.org/10.3133/cir645
Liu, J., Liu, D., Song, K., 2015. Evaluation of the influence caused by tunnel construction on groundwater environment: A case study of Tongluoshan tunnel, China. Advances in Materials Science and Engineering 1.‏ https://doi.org/10.1155/2015/149265.
Lv, Y., Jiang, J., Chen, L., Hu, W., Jiang, Y., 2022. Elaborate simulation and predication of the tunnel drainage effect on karst groundwater field and discharge based on Visual MODFLOW. Journal of Hydrology 612, Part A, 128023. https://doi.org/10.1016/j.jhydrol.2022.128023.
Mossmark, F., Annertz, K.K., Ericsson, L.O. Norin, M., 2017. Hydrochemical impact of construction of the western section of the Hallandsås rail tunnel in Sweden. Bulletin of Engineering Geology and the Environment 76, 751–769. https://doi.org/10.1007/s10064-016-0962-7
Raposo, J.R., Molinero, J., Dafonte, J., 2010. Quantitative evaluation of hydrogeological impact produced by tunnel construction using water balance models. Engineering Geology 116(3-4), 323–332. https://10.1016/j.enggeo.2010.09.014.
Stocklin, J., 1974. Possible Ancient Continental Margin in Iran. In: Burke, C.A. and Drake, C.L., (Eds.), The Geology of Continental Margins, Springer, New York 873-887 PP. https://doi.org/10.1007/978-3-662-01141-6_64
Tang, Y.G., Zhang, Q., Qi, J. H., Xu, M., Li, X., Qu, C. H., Yi, L., Wang, D., 2023. Change Analysis of Karst Landforms, Hydrogeological Conditions and Effects of Tunnel Excavation on Groundwater Environment in Three Topography Grades in China. Water 15, 207, 1-24. https://doi.org/10.3390/w15010207.
Vincenzi, V., Piccinini, L., Gargini, A., Sapigni, M., 2022. Parametric and numerical modeling tools to forecast hydrogeological impacts of a tunnel. Acque Sotterranee - Italian Journal of Groundwater 558, 51 – 69. https://10.7343/as-2022-558.
Yoo, Chungsik. 2005. Interaction between Tunneling and Groundwater—Numerical Investigation Using Three Dimensional Stress–Pore Pressure Coupled Analysis. Journal of Geotechnical and Geoenvironmental Engineering 131(2), 240-250. https://10.1061/(ASCE)1090-0241(2005)131:2(240).
Zhang, L., Zhao, D., Wu, J., Yang, W., Wang, W., Xin, D., 2020. Prediction of water inflow in Tsingtao subsea tunnel based on the superposition principle. Tunnelling and Underground Space Technology 97, 103243. https://10.1016/j.tust.2019.103243
Zhang, Y., Tan, F., Zuo, C., Feng, X., Jiao, Y., 2024. Effects of granite stratum with different weathering levels on water discharge in metro tunnels. Tunnelling and Underground Space Technology 150, 105833. https://doi.org/10.1016/j.tust.2024.105833.