ساخت نمودار انحراف سرعت مبتنی بر نمودار چاه پیمایی و NMR جهت تعیین دقیق‌ انواع تخلخل در سازند آسماری در چاهی در یکی از میدان نفتی اهواز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم زمین، گروه زمین‌شناسی، دانشگاه شهیدچمران اهواز، اهواز، ایران

2 عضو هیئت علمی دانشگاه تبریز

چکیده

فرآیندهای دیاژنتیکی پیچیده باعث تغییرات قابل توجهی در تخلخل مخازن کربناته می شوند. نوع تخلخل به شدت بر جریان سیال و در نهایت هیدروکربن‌های قابل بازیافت تأثیر می‌گذارد. با این حال، تجزیه و تحلیل داده‌های مغزه، روش سنتی برای تعیین تخلخل است که روشی بسیار پرهزینه محسوب می‌شود. این مطالعه به بررسی استفاده از نمودارهای مربوط به انحراف سرعت در سازند آسماری است که جایگزینی مقرون به صرفه، برای شناسایی انواع تخلخل است. برای طبقه‌بندی تخلخل از داده‌های لاگ چاه، از جمله انحراف سرعت، لاگ‌های پتروفیزیکی و NMR استفاده شده است. همچنین در این مطالعه از مشاهدات مقاطع نازک به عنوان ا ابزاری برای اعتبار سنجی استفاده شده است. لاگ انحراف سرعت هشت زیر گروه تخلخل را شناسایی کرد، از جمله ریزتخلخل بین دانه‌ای، قالبی، ریز تخلخل، بین ذره‌ای، بین بلوری، شکستگی و ریزتخلخل شیل. نتایج نشان داد که تخلخل بین دانه ای در ماسه سنگ ها و شکستگی، تخلخل بین دانه ای و بین کریستالی در کربنات‌ها تولید مخزن آسماری را کنترل می‌کنند. این مطالعه کارایی لاگ های انحراف سرعت را در تعیین انواع تخلخل در سازند آسماری نشان می دهد و اهمیت این چهار نوع تخلخل را برای تولید مخزن برجسته می‌کند. امید است داده های مقاله در جهت شناسایی زونهای تولیدی، بهینه سازی و گسترش میدان نفتی مورد مطالعه اثربخش باشد.

کلیدواژه‌ها

موضوعات


Abo Bakr, A., El Kadi, H.H., Mostafa, T., 2024. Petrographical and petrophysical rock typing for flow unit identification and permeability prediction in lower cretaceous reservoir AEB_IIIG, Western Desert, Egypt. Scientific Reports 14 (1), 5656. https://doi.org/10.1038/s41598-024-56178-z.
Aghli, G., Soleimani, B., Tabatabai, S.S., Zahmatkesh, I., 2017. Calculation of fracture parameters and their effect on porosity and permeability using image logs and petrophysical data in carbonate Asmari reservoir, SW Iran. Arabian Journal of Geosciences 10, 1-14. https://doi.org/10.1007/s12517-017-3047-4.
Amiri Bakhtiar, H., Noraienejad, M. R., 2022. Stratigraphy of Zagros: Cenozoic, Taravar Publications, 390 pages.
Anselmetti, F.S., Eberli, G.P., 1999. The velocity-deviation log: a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs. American Association Petroleum Geologists bulletin 83 (3), 450-466. ‏ https://doi.org/10.1306/00AA9BCE-1730-11D7-8645000102C1865D.
Asaad, I.S., Omer, M.F., 2024, February. Diagenetic control on porosity types of carbonate rocks of Late Triassic Baluti Formation in Northern Thrust Zone, Iraqi Kurdistan region, Northern Iraq. In IOP Conference Series: Earth and Environmental Science (Vol. 1300, No. 1, p. 012027). IOP Publishing. DOI 10.1088/1755-1315/1300/1/012027.
Avarjani, S., Mahboubi, A., Moussavi Harami, S.R., Amiri-Bakhtiar, H., 2014. provienence, tectonic setting and geochemistary of Ahvaz sandstone member (Asmari Formation, oligo-miocene), Asmari Formation, Marun oilfield Zagros Basin, NW Iran. Acta Geologica Sinica 88. https://doi.org/10.1111/1755-6724.12247.
Choquette, P.W., Pray, L.C., 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association Petroleum Geologists Bulletin 54, 207-50. https://doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D.
Dill, M.A., Vaziri-Moghaddam, H., Seyrafian, A., Behdad, A., Shabafrooz, R., 2020. A review of the Oligo–Miocene larger benthic foraminifera in the Zagros basin, Iran; New insights into biozonation and palaeogeographical maps. Revue de Micropaléontologie 66, 100408. https://doi.org/10.1016/j.revmic.2020.100408.
Ghasem Al-Askari, M., 2014. Geology of Petroleum and Oil Formations of Iran, First Edition, Ayzh Press, 288 pages.
Hamada, G., Joseph, V., 2020. Developed correlations between sound wave velocity and porosity, permeability and mechanical properties of sandstone core samples. Petroleum Research 5 (4), 326-338. ‏ https://doi.org/10.1016/j.ptlrs.2020.07.001.
Hilchie, D.W., 1989. Advanced well log interpretation: Golden Colorado, D. W; Hilchie, variously, paginated.
Janjuhah, H. T., Sanjuan, J., Alqudah, M., Salah, M.K., 2021. Biostratigraphy, depositional and diagenetic processes in carbonate rocks from southern Lebanon: impact on porosity and permeability. Acta Geologica Sinica‐English Edition 95(5), 1668-1683. ‏ https://doi.org/10.1111/1755-6724.14695
Kadkhodaei, A., 2018. Evaluation of Oil-bearing Formation, First Edition, Dayareh Danesh Press, 572 pages.
Kadkhodaie, R., Kadkhodaie, A., Rezaee, R., 2021. Study of pore system properties of tight gas sandstones based on analysis of the seismically derived velocity deviation log: a case study from the Perth Basin of western Australia. Journal of Petroleum Science and Engineering 196, 108077. https://doi.org/10.1016/j.petrol.2020.108077.
Kamrava, S., Tahmasebi, P., Sahimi, M., 2020. Linking morphology of porous media to their macroscopic permeability by deep learning. Transport in Porous Media 131 (2), 427-448. ‏ https://doi.org/10.1007/s11242-019-01352-5.
Karimi, A.R., Rabbani, A.R., Kamali, M.R., 2016. A bulk kinetic, burial history and thermal modeling study of the Albian Kazhdumi and the Eocene-Oligocene Pabdeh formations in the Ahvaz anticline, Dezful Embayment, Iran. Journal of Petroleum Science and Engineering 146, 61-70.‏ https://doi.org/10.1016/j.petrol.2016.04.015.
Khalili, A., Vaziri-Moghaddam, H., Arian, M., Seyrafian, A., 2021. Carbonate platform evolution of the Asmari Formation in the east of Dezful Embayment, Zagros Basin, SW Iran. Journal of African Earth Sciences 181, 104229. https://doi.org/10.1016/j.jafrearsci.2021.104229.
Lai, J., Wang, G., Cao, J., Xiao, C., Wang, S., Pang, X., Qin, Z., 2018. Investigation of pore structure and petrophysical property in tight sandstones. Marine and Petroleum Geology 91, 179-189. https://doi.org/10.1016/j.marpetgeo.2017.12.024.
Larki, E., Jaffarbabaei, B., Soleimani, B., Elyasi, A., Saberi, F., Makarian, E., Radwan, A. E., 2023. A new insight to access carbonate reservoir quality using quality factor and velocity deviation log. Acta Geophysica 1-20. https://doi.org/10.1007/s11600-023-01249-4
Liu, H., 2017. Principles and applications of well logging Berlin, Heidelberg: Springer Berlin Heidelberg 237-269. https://doi.org/10.1007/978-3-662-53383-3.
Lønøy, A., 2006. Making sense of carbonate pore systems. AAPG bulletin 90(9), 1381-1405. https://doi.org/10.1306/03130605104.
Mohsenipour, A., Soleimani, B., Veisi, I.., 2021. Permeability estimation using petrophysical logs and artificial intelligence methods: A case study in the Asmari reservoir of Ahvaz oil field. Iranian Journal of Petroleum Geology 20 (20), 17.  ‏
Mohsenipour, A., Soleimani, B., Zahmatkesh, I., Veisi, I., 2022. Determination of reservoir rock typing using integrating geological and petrophysical methods in one of the oil field in south-west of Iran. Carbonates and Evaporites 37 (2), 31. https://doi.org/10.1007/s13146-022-00782-5‏
Moore, C.H., 1989. Carbonate diagenesis and porosity. Elsevier, 338 P.
Motiei, H., 1993. Geology of Iran, Stratigraphy of Zagros, 556 P, (In Persian).
Nur, A., and Simmons, G., 1969. The effect of saturation on velocity in low porosity rocks: Earth and Planetary Science Letters 7, 183–193. https://doi.org/10.1016/0012-821X(69)90035-1.
Radwan, A.A., Nabawy, B.S., Abdelmaksoud, A., Lashin, A., 2021. Integrated sedimentological and petrophysical characterization for clastic reservoirs: A case study from New Zealand. Journal of Natural Gas Science and Engineering 88, 103797. ‏ https://doi.org/10.1016/j.jngse.2021.103797
Rahim Pourbonab, H., 2015. Geology of Carbonate Reservoirs, University of Tehran Press, 400 P.
Rashid, F., Hussein, D., Glover, P.W.J., Lorinczi, P., Lawrence, J.A., 2022. Quantitative diagenesis: Methods for studying the evolution of the physical properties of tight carbonate reservoir rocks. Marine and Petroleum Geology 139, 105603. https://doi.org/10.1016/j.marpetgeo.2022.105603
Ravanshad, M.S., Soleimani, B., Larkee, E., Soleimani, M., 2017. Petrophysical evaluation and reservoir quality of Ilam Formation (Late Cretaceous), Ahvaz oilfield, Dezful embayment, SW Iran. Petroleum and Coal 59 (2).
Ren, X., Guo, Z., Ning, F., Ma, S., 2020. Permeability of hydrate-bearing sediments. Earth-science reviews 202, 103100. https://doi.org/10.1016/j.earscirev.2020.103100
Rezaei, M., T., Fereydouni, A., Fereydouni, M., 2014. Petrophysics, Setayesh Press, 697 pages.
Salih, M., El-Husseiny, A., Reijmer, J.J., Eltom, H., Abdelkarim, A., 2023. Factors controlling sonic velocity in dolostones. Marine and Petroleum Geology 147, 105954.
Schlumberger, Inc., 1998. Log Interpretation-Principle. Schlumberger Educational Services, Houston.
Shazly, T., 2012. June. Application of the Velocity-deviation Log in Determining Pore Types and Permeability Trends of Nubia SS Formation. In 74th EAGE Conference and Exhibition incorporating EUROPEC 2012 (pp. cp-293). European Association of Geoscientists & Engineers.‏
Soleimani, B., Zahmatkesh, I., Sheikhzadeh, H., 2020. Electrofacies analysis of the Asmari reservoir, Marun oil field, SW Iran. Geosciences Journal 24, 195-207. https://doi.org/10.1007/s12303-019-0035-6.
Soleimani, M., Soleimani, B., Alizadeh, B., Veisy, A. R., 2017. Carbonate Tight Zones Detection and Their Impacts on Bangestan Reservoir Quality, Ahvaz Oil Field, SW Iran. International Journal of Emerging Research in Management &Technology 6 (3), 21-30.
Sun, Y.F., Berteussen, K., Vega, S., Eberli, G.P., Baechle, G.T., Weger, R.J., Gartner, G.B., 2006, October. Effects of pore structure on 4D seismic signals in carbonate reservoirs. In SEG International Exposition and Annual Meeting SEG-2006). SEG.‏
Wang, Z.H.I.J.I.N.G., Hirsche, W.K., Sedgwick, G., 1991. Seismic velocities in carbonate rocks. Journal of Canadian Petroleum Technology 30 (02), 112.‏ https://doi.org/10.2118/91-02-09.
Winkler, K.W., Murphy, W.F., 1995. Acoustic velocity and attenuation in porous rocks. Rock physics and phase relations. A Handbook of physical constants, 20-34. ‏
Wyllie, M.R.J., Gregory, A.R., Gardner, L. W., 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics 21(1), 41-70.‏
Wyllie, M.R.J., Gregory, A.R., Gardner, L.W., 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics 21(1), 41-70.‏ https://doi.org/10.1190/1.1438217.
Yang, L., Yu, L., Chen, D., Liu, K., Yang, P., Li, X., 2020. Effects of dolomitization on porosity during various sedimentation-diagenesis processes in carbonate reservoirs. Minerals 10 (6), 574. https://doi.org/10.3390/min10060574.‏
Yasar, E., Erdogan, Y., 2004. Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences 41 (5), 871-875. https://doi.org/10.1016/j.ijrmms.2004.01.012. ‏
Zahmatkesh, I., Kadkhodaie, A., Soleimani, B., Azarpour, M., 2021. Integration of well log-derived facies and 3D seismic attributes for seismic facies mapping: A case study from mansuri oil field, SW Iran. Journal of Petroleum Science and Engineering 202, 108563. https://doi.org/10.1016/j.petrol.2021.108563.
Zahmatkesh, I., Mohsenipour, A., Amraei, A., 2020. Estimation of reservoir rock properties from conventional well log data by using a hybrid particle swarm optimization and neural network approach. Methods 10 (1), 96-109. ‏ https://doi.org/10.22055/AAG.2020.31475.2047.