Using the Singularity Method in Identifying of the Alterations in the Zafarghand Porphyry Copper Deposit (Isfahan)

Authors

Department of Mining Engineering, Amirkabir University of Technology (Tehran Polytechnic)

Abstract

Nowadays, geological remote sensing in the shortest time and with the lowest cost makes access to different areas very easy and determines the suitable places for the formation of hydrothermal deposits. In the upcoming study, with the help of a satellite image processing technique, the alteration zones of the Zafarghand exploration area will be highlighted. The exploration area of Zafarghand is located in the northeast of Isfahan and is based on the division of geological structural zones in the central Iran zone (the middle part of the Urmia-Dokhtar magmatic volcanic arc). The Zafarghand porphyry system includes phyllic, potassic, propylitic, argillic, and slightly siliceous alteration halos. In this study, by using the images of the ASTER sensor, the related alterations have been identified. For this purpose, according to the raster and digital nature of satellite images, the digital number values of each pixel from the image matrix set are considered as a sample of a systematic network. Finally, the singularity method algorithm has been implemented as an effective structural method for the separation of geochemical anomalies on the set of pixel number digital values of the ASTER sensor satellite images. The results obtained from the aforementioned technique show that the use of the singularity method has been successful in decision-making due to its structural nature and has been very effective in determining the alteration zones of the Zafarghand region, especially propylitic and phyllic alterations. Finally, with the help of the proposed method, an alteration map of Zafarghand area has been prepared.

Keywords

Main Subjects


ANJC (Alamut Naghsh-e Jahan Company), 2011. Initial exploration report of Zafarghand copper index, Isfahan, Iran. 270pp. (in Persian).
Alaminia, Z., Bagheri, H., Salehi, M., 2017. Geochemical and geophysical investigations and fluid inclusion studies in the exploration area of Zafarghand (Northeast Isfahan, Iran). Journal of Economic Geology 9(2), 29-30. https://doi.org/10.22067/econg.v9i2.56334.  
Aminoroayaei Yamini, M., Tutti, F., Ahmadian, J., 2016. Hydrothermal Alteration of Porphyry Copper Deposit in the Southwest of Zafarghand with Emphasis on Mineralogical and Geochemical Changes in the Area. Researches in Earth Sciences 7(1), 75-90. https://dorl.net/dor/20.1001.1.20088299.1395.7.1.6.7.
Abubakar, A.J., Hashim, M., Beiranvand Pour, A., 2019. Remote sensing satellite imagery for prospecting geothermal systems in an aseismic geologic setting: Yankari Park. Applied Earth Observation and Geoinformation 80, 157-172. https://doi.org/10.1016/j.jag.2019.04.005.
Amidi, S.M., 1975. Contribution à l'étude stratigraphique, pétrologique et pétrochimique des roches magmatiques de la région Natanz-Nain-Surk (Iran central), Ph.D Thesis, Université Scientifique et Médicale de Grenoble.
Aminroayaei Yamini, M., Tutti, F., Aminoroayaei Yamini, M.R., Ahmadian, J., Wan, B., 2017. Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses. Mineralogy and Petrology 111, 747-759. https://doi.org/10.1007/s00710-016-0486-7.
Aminoroayaei Yamini, M., Tutti, F., Aminoroayaei Yamini, M.R., Ahmadian, J., 2018. Plagioclase as Evidence of Magmatic Evolution in the Zafarghand Porphyry Copper Deposit, NE of Isfahan. Journal of Economic Geology 10(1), 61-76.
Aminoroaya Yamini, M., Tutti, F., Haschke, M., Ahmadian, j., Murata, M., 2017. Synorogenic copper mineralization during the Alpine–Himalayan orogeny in the Zafarghand copper exploration district, Central Iran: petrogrography, geochemistry and alteration thermometry. Geological Journal 52(2), 263-281.
Bahramiyan, S., 2007. Petrological and geochemical study of the intrusive mass of Baghm, Northeast of Isfahan. Master's thesis, Faculty of Natural Sciences, Department of Geology, University of Tabriz, East Azerbaijan, Iran. http://dx.doi.org/10.29252/ijcm.28.2.489.
Bazargani Golshan, M., Arian, M., Afzal, P., Daneshvar Saein, L., Aleali, M., 2024. Outlining of high-quality parts of coal by concentration–volume fractal model in North Kochakali coal deposit, Central Iran. Journal of Mining and Environment 15(2), 557-579.
Beiranvand Pour, A., Hashim, M., 2011. Identification of hydrothermal alteration mineral for exploration of porphyry copper deposit using ASTER data, SE Iran. Asian Earth Sciences 42(6), 1309-1323. http://dx.doi.org/10.1016/j.jseaes.2011.07.017.
Bernstein, L.S., Adler-Golden, S.M., Sundberg, R.L., Levine, R.Y., Perkins, C.T., Berk, A., Ratkowski, J.A., Felde, G., Hoke, M.L., 2005. Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. Proceedings Volume 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Orlando, Florida, United States. http://dx.doi.org/10.1117/12.603359.
Behbahani, B., Harati, H., Afzal, P., Lotfi, M., 2023. Determination of alteration zones applying fractal modeling and Spectral Feature Fitting (SFF) method in Saryazd porphyry copper system, central Iran. Bulletin of the Mineral Research and Exploration 1-20. http://dx.doi.org/10.19111/bulletinofmre.1264604.
Cheng, Q., 2006. GIS-based multifractal anomaly analysis for prediction of mineralization and mineral deposits. In: Harris, J., (Ed.), GIS Applications in Earth Sciences, Geological Association of Canada Special Paper, PP. 289–300.
Cheng, Q., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu Yunnan Province, China. Ore Geology Reviews 32(1-2), 314- 324. https://doi.org/10.1016/j.oregeorev.2006.10.002.‌
Cheng Q, Agterberg FP, Bonham-Carter, GF., 1996. A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration 56, 183–I95. https://ui.adsabs.harvard.edu/link_gateway/1996JCExp..56..183C/doi:10.1016/S0375-6742(96)00035-0.
 Cheng Q, Yaguang X. Eric G., 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research 9(1), 43–52. http://dx.doi.org/10.1023/A:1010109829861.
El-Qassas, R.A.Y., Abu-Donia, A.M., Omar, A.E.A., 2023. Delineation of hydrothermal alteration zones associated with mineral deposits, using remote sensing and airborne geophysics data. A case study: El‑Bakriya area, Central Eastern Desert, Egypt. Acta Geodaetica et Geophysica 5, 71–107. https://doi.org/10.1007/s40328-023-00405-y.
Esmailzadeh Kalkhoran, S., Ghannadpour, S.S., Moeini Rad, A., Jalili, H., 2024. Comparing the Performance of ASTER and LANDSAT 8 Satellite Images in Identifying Iron Oxide and Porphyry Copper Alterations in Zafarghand Region of Isfahan Province. Journal of Mineral Resources Engineering 9(1), 41-65.
Esmailzadeh Kalkhoran, S., Ghannadpour, S.S., Jalili, H., Moeini Rad, A. 2024. Investigating porphyry copper alterations and spectral behavior of related minerals using ASTER satellite images in the Zafarghand region, Isfahan. Advanced Applied Geology, Articles in Press (In Persian with English Abstract).
Fakhari, S., Jafarirad, A., Afzal, P., Lotfi, M., 2019. Delineation of hydrothermal alteration Zones for porphyry systems utilizing ASTER data in Jebal-Barez area, SE Iran. Earth Sciences 11, 80-92. https://doi.org/10.30495/ijes.2019.664780.
Fereydooni, H., Mojeddifar, S., 2017. A directed matched filtering algorithm (DMF) for discriminating hydrothermal alteration zones using the ASTER remote sensing data. Applied Earth Observation and Geoinformation 63, 1-13. https:// doi:10.1016/j.jag.2017.04.010.
Goetz, A.F.H., Billingsley, F.C., Gillespie, A.R., Abrams, M.J., Squires, R.L., Shoemaker, E.M., Lucchitta, I., Elston, D.P., 1975. Applications of ERTS Image and Image Processing to Regional Problems and Geologic Mapping in Northern Arizona. NASA/JPL Technical Reports 32-1597, NASA: Pasadena, CA, USA.
Grove, C.I., Hook, S.J., Paylor III, E.D., 1992. Laboratory reflectance spectra of 160 minerals, 0.4 to 2.5 micrometers. Jet Propulsion Laboratory Publication, Pasadenia, California 92-2.
Ghannadpour, S.S., Hasiri, M., Talebiesfandarani, S., & Jalili, H. (2024). Processing of ASTER satellite images using fractal concentration-area method. Journal of Mineral Resources Engineering 9(3), 10.30479/jmre.2024.19329.1665. (In Persian with English Abstract). https://jmre.journals.ikiu.ac.ir/article_3314.html
Ghannadpour, S.S., Hasiri, M., Jalili, H., Talebiesfandarani, S., 2024 Satellite Image Processing: Application for Alteration Separation based on U-Statistic Method in Zafarghand Porphyry System (Iran). Journal of Mining and Environment 15(2), 667-681.
Ghannadpour, S.S., Esmailzadeh Kalkhoran, S., Jalili, H., Behifar, M., 2024 Delineation of mineral potential zone using U-statistic method in processing satellite remote sensing images. International Journal of Mining and Geo-Engineering 57(4), 445-453.
Ghannadpour, S.S., Hezarkhani, A., 2022a. A new method for determining geochemical anomalies: UN and UA fractal models. International Journal of Mining & Geo-Engineering 56(2), 181-190.
Ghannadpour, S.S., Hezarkhani, A., 2020. Mineral potential mapping for Au and As using Gap statistic method in multivariate mode. Carbonates and Evaporites 35, 2. https://doi.org/10.1007/s13146-019-00546-8.
Ghannadpour, S.S., Hezarkhani, A., 2018. Providing the bivariate anomaly map of Cu–Mo and Pb–Zn using combination of statistic methods in Parkam district, Iran. Carbonates and Evaporites 33(3), 403–420.
Ghannadpour, S.S., Hezarkhani, A., 2017. Comparing U-statistic and nonstructural methods for separating anomaly and generating geochemical anomaly maps of Cu and Mo in Parkam district, Kerman, Iran. Carbonates and Evaporites 32(2), 155–166.
Ghannadpour, S.S., Hezarkhani, A., 2016a. Exploration geochemistry data-application for anomaly separation based on discriminant function analysis in the Parkam porphyry system (Iran). Geoscience Journal 20(6), 837–850.
Ghannadpour, S.S., Hezarkhani A., 2016b. Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development. Journal of Earth System Science 125(2), 387–401.
Hewson, R.D., Cudahy, T.J., Mizuhiko, S., Ueda, K., Mauger, A. j., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment 99, 159-172. https://doi.org/10.1016/j.rse.2005.04.025.
Hezarkhani, A., Ghannadpour, S.S., 2015. Exploration Information Analysis. Amirkabir University of Technology Publications.
Heidari, S.M., Afzal, P., Sadeghi, B., 2024. Molybdenum and gold distribution variances within Iranian copper porphyry deposits. Journal of Geochemical Exploration, 107471.
Honarmand, M., Moeid, M., Jahangiri, A., Bahadaran, N., 2010. Investigation of Geochemical Characteristics of the Intrusive Suite of Natanz, North of Isfahan. Petrology 1(3), 65-88.
Hunt, G. R. Salisbury, J. W., 1971. Visible and near infrared spectra of minerals and rocks. II. Carbonates. Modern Geology 2, 23-30.
Jabari, A., Ghorbani, M., Koopkeh, Y., Tarabi, Gh., Shirdashtzadeh, N., 2010. Petrography and Mineral Chemistry of the Outer West Dikes (Southeast of Ardestan, Iran): Evidence of Magmatic Mixing. Petrology 1(2), 17-30.
Khalatbari Jafari, M., 1992. Plutonism in the Ardestan Region. Master's thesis, Shahid Beheshti University, Iran.
Latifi, R., 2000. Geological, Petrological, and Geochemical Study of Intrusive Bodies in the South and Northwest of Zafarghand. Master's thesis, University of Isfahan, Iran.
Liu, J.G., Mason, P.J., 2016. Image Processing and GIS for Remote Sensing: Techniques and Applications. John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1118724208.
Liu, Y., Xia, Q., Carranza, E.J.M., 2019. Integrating sequential indicator simulation and singularity analysis to analyze uncertainty of geochemical anomaly for exploration targeting of tungsten polymetallic mineralization, Nanling belt, South China. Journal of Geochemical Exploration 197, 143-158. https://doi.org/10.1016/j.gexplo.2018.11.012.
Li, Q., Zhang, B., Lu, L., Lin, Q., 2014. Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing. IOP Conference Series: Earth and Environmental Science 17, 012174.
Mhangara, P., 2005. Testing the ability of ASTER (Advanced spaceborne thermal emission and reflection radiometer) to tap hydrothermal alteration zones: a case study of the Haib Porphyry Copper-Molybdenum Deposit. Namibia. MSc dissertation, Stellenbosch University.
Mohammadi, S., Nedaei, A.R., Aalami Nia, Z., 2018. Analysis of the relationship between mineralization and alteration zones with tectonic structures using remote sensing studies in south Ardestan area (northeastern Isfahan). Geotectonics 2(7), 29-47. http://dx.doi.org/10.22077/JT.2020.2434.1013.
Mohammadi, S., 1995. Investigation of Volcanism in the Ardestan Region (Central Iran). Master's thesis, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran.
Nasr Esfahani, A., Vahabi Moghadam, B., 2010. Tectonic and Magmatic Setting of the Felsic Volcanic Rocks in South Ardestan (Northeast of Isfahan). Petrology 1(2), 95-108.
Oleson, R., Doescher, Ch., 2022. Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Level 1 Precisin Terrain Corrected Registered At-sensor Radiance Product (AST_L1T). Department of the Interior U.S Geological Survey, 16.
Pardel, F., Ebrahimi, A., Azizi, Z., 2019. The effect of atmospheric correction methods on the relationship between vegetation indices and canopy cover (Case study: Marjan rangelands of Borujen). Geospatial Information Technology 7(2), http://dx.doi.org/10.29252/jgit.7.2.133.
Pourgholam, M.M., Afzal, P., Adib, A., Rahbar, K., Gholinejad, M. 2024. Recognition of REEs anomalies using an image Fusion fractal-wavelet model in Tarom metallogenic zone, NW Iran. Geochemistry 84(2), 126093.
Ramachandran, R., Justice, C.O, Abrams, M.J., 2011. The practice of international policies in the ASTER collaboration, In Land Remote Sensing and Global Environmental Change. Eds., Springer: New York, NY, USA; Chapter 4, 483-508.
Sadeghian, M., Ghaffary, M., 2011. Petrogenesis of the Zafarghand Granitoid Massif (Southeast of Isfahan). Petrology 2(6), 47-70.
Salisbury, J. W., D'Aria, D. M., 1992. Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sensing of Environment 42(2), 83-106. https://doi.org/10.1016/0034-4257(92)90092-X.
Sarjoughian, F., Lentz, D., Kananian, A., Ao, S., Xiao, W., 2018. Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran: evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex. International of Journal of Earth Sciences 107, 1127-1151. https://ui.adsabs.harvard.edu/link_gateway/2018IJEaS.107.1127S/doi:10.1007/s00531-017-1548-8.
Shahi, H., Kamkar-Rouhami, A., 2014. A GIS-based weights of evidence model for mineral potential mapping of hydrothermal gold deposits in Torbat-e-Heydarieh area. Journal of Mining and Environment 5(2), 79-89. https://doi.org/10.22044/jme.2014.324.
Shahi, H., Ghavami, R., Kamkar Rouhani, A., 2016. Detection of deep and blind mineral deposits using new proposed frequency coefficients method in frequency domain of geochemical data. Journal of Geochemical Exploration 169, 29-39. https://ui.adsabs.harvard.edu/link_gateway/2016JCExp.162...29S/doi:10.1016/j.gexplo.2015.12.006.
Vicente, L.E. and de Souza Filho, C.R., 2011. Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment 115(8), 1824-1836. http://dx.doi.org/10.1016/j.rse.2011.02.023.
Wang, J., Zuo, R., 2018. Identification of geochemical anomalies through combined sequential Gaussian simulation and grid-based local singularity analysis. Computers & Geosciences 118, 52-64. https://doi.org/10.1016/j.cageo.2018.05.010.
Xiao, F., Chen, J., Hou, W., Wang, Z., Zhou, Y., Erten, O., 2018. A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. Journal of Geochemical Exploration 189, 122-137. https://doi.org/10.1016/j.gexplo.2017.03.017.
Yeganeh Far, H., Ghorbani, M.R., 2010. Geochemical Characteristics and Petrogenesis of Basement Rocks in Southern Ardestan. 29th Geological Congress, Geological Survey and Mineral Exploration Organization of Iran, Tehran, Iran.
Zamyad, M., Afzal, P., Pourkermani, M., Nouri, R., Jafari, M.R., 2021. Combination of Spectral Feature Fitting (SFF) and Concentration-Number (C-N) Fractal Modeling for Identification Alteration in Tirka Area, NE Iran. Scientific Quarterly Journal of Geosciences 31(4), 57-68. https://dorl.net/dor/20.1001.1.10237429.1400.31.4.3.2.