بررسی دگرسانی‌های مس پورفیری و رفتارطیفی کانی‌های مربوطه به کمک تصاویر ماهواره استر در منطقه ظفرقند، اصفهان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)

2 دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)

3 مرکز تحقیقات فضایی، پژوهشگاه فضایی ایران، تهران، ایران

چکیده

هدف از این مطالعه، بارزسازی دگرسانی‌های منطقه با استفاده از روش‌هایی همچون؛ ترکیب رنگی کاذب، نسبت باندی، کمترین مربعات رگرسیون‌شده، فیلترگذاری تطبیقی، آنالیز مؤلفه اصلی و نقشه‌برداری زاویه طیفی است و همچنین برای شناسایی پیکسل‌‎های خالص منطقه از روش PPI که از نتیجه حاصل از روش کسر کمترین نویز بهره می‌گیرد، استفاده شده ‌است (مجموعاً 7 روش). به منظور اعتبارسنجی نتایج، از نقشه دگرسانی منطقه بهره گرفته شده است که بر این اساس نتایج حاصله، مطابقت بسیار بالایی با دگرسانی‌های فیلیک و پروپیلیتیک در منطقه مطالعاتی را دارند. براساس نقشه دگرسانی منطقه مورد مطالعه، تأثیرات دگرسانی فیلیک و پروپیلیتیک بر بخش اعظمی از این منطقه قابل مشاهده است. در حالی که دگرسانی آرژیلیک و پتاسیک در این منطقه به صورت محدود دیده می‌شوند. روش‌های پردازش اعمال شده بر روی منطقه باعث برجسته شدن دگرسانی‌های فیلیک، آرژیلیک و پروپیلیتیک شده ولی به دلیل محدود بودن دگرسانی پتاسیک در محدوده ظفرقند، شناسایی صحیح این دگرسانی در منطقه تضمین نشده است. در مورد شناسایی و بارزسازی دگرسانی‌های منطقه مورد مطالعه، روش‌های SAM، PPI ، BR و PCA عملکرد بسیار مؤثری را به همراه داشته‌اند، که هریک به تحلیل داده‌های طیفی یا تصاویر و تشخیص تفاوت‌ها و الگوهای مختلف در مناطق مورد بررسی کمک می‌کنند. در حقیقت با نگاهی جزئی‌تر می‌توان اذعان داشت که در بارزسازی دگرسانی‌های منطقه ظفرقند به کمک 7 روش پردازشی فوق‌الذکر، دگرسانی آرژیلیک با دقت 71.43% (5 روش)، دگرسانی فیلیک با دقت 85.71% (6 روش) و دگرسانی پروپیلیتیک با دقت 71.43% (5 روش) شناسایی شده و مورد تایید قرار گرفته‌اند.

کلیدواژه‌ها

موضوعات


Alaminia, Z., Bagheri, H., Salehi, M., 2017. Geochemical and geophysical investigations and fluid inclusion studies in the exploration area of Zafarghand (Northeast Isfahan, Iran). Economic Geology 9, 295-312. https://doi.org/10.22067/econg.v9i2.56334.
Abrams, M., Yamaguchi, Y., 2019. Twenty years of ASTER contributions to lithologic mapping and mineral exploration. Remote Sensing 11, 1394. https://doi.org/10.3390/rs11111394.
ANJC (Alamut Naghsh-e Jahan Company), 2011. Initial exploration report of Zafarghand copper index, Isfahan, Iran. 270. (in Persian).
Adiri, Z., El Harti, A., Jellouli, A., Maacha, L., Bachaoui, E.M., 2016. Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas. Applied Remote Sensing 10, 016005. https://doi.org/10.1117/1.JRS.10.016005.
Aboelkhair, H., Ninomiya, Y., Watanabe, Y., Sato, L., 2010. Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt. African Earth Sciences 58, 141-151. 10.1016/j.jafrearsci.2010.01.007.
Aminroayaei Yamini, M., Tutti, F., Ahmadian, J., 2017. Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses. Mineralogy and Petrology 111, 747-759. https://doi.org/10.1007/s00710-016-0486-7.
Aminoroayaei Yamini, M., Tutti, F., Aminoroayaei Yamini, M. R., Ahmadian, J., 2018. Plagioclase as evidence of magmatic evolution in the Zafarghand porphyry copper deposit, NE Isfahan. Economic Geology 10, 61-76. https://econg.um.ac.ir/article_33021.html?lang=en.
Amera, S.A., 2007. Spectral remote sensing of hydrothermal alteration associated with volcanic massive sulphide deposite Gorob-Hope area, Namibia, ITC.
Amer, R., Kusky, T., El Mezayen, A., 2012. Remote Sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Advances in Space Research 49, 121–134. https://doi.org/10.1016/j.asr.2011.09.024.
Amidi, S. M., 1975. Contribution à l'étude stratigraphique, pétrologique et pétrochimique des roches magmatiques de la région Natanz-Nain-Surk (Iran central), Ph.D Thesis, Université Scientifique et Médicale de Grenoble.
Asadi Haroni, H., 2000. The Zarshuran gold model applied in a mineral exploration GIS in Iran, Ph.D thesis. Delft University of Technology.
Aslani, S., Bahroudi, A., Karimi, J., Khodras Haghighi, A., 2008. Extracting the Alteration Haloes of the Sarbisheh Copper-Gold Mineral Prospect Using ASTER Satellite Data. Journal of the College of Engineering 42, 607-615. https://jfe.ut.ac.ir/article_27154.html?lang=fa
Aliani, F., Dadfar, S., Maanijou, M., 2015. Detection of alteration zone of Haji Abad Iron Deposit with (SWIR+VNIR) data of ASTER Sensor. https://dorl.net/dor/20.1001.1.10237429.1393.24.94.50.0.
Bahramiyan, S., 2007. Petrological and Geochemical Study of the Intrusive Mass of Baghm, Northeast of Isfahan. M. Sc. thesis, Faculty of Natural Sciences, Department of Geology, University of Tabriz, East Azerbaijan, Iran.
Bernstein, L.S., Adler-Golden, S., Sundberg, R., Levine, R.Y., 2005. Validation of the QUAC Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi and hyperspectral imagery. SPIE Proceedings, Algorithm and Technologies for Multispectral, Hyperspectral and Ultraspectral Imagery XI, 5806, 668-678. http://dx.doi.org/10.1117/12.603359.
Beygi, S., Talovina, I. V., Tadayon, M., & Pour, A. B., 2021. Alteration and structural features mapping in Kacho-Mesqal zone, Central Iran using ASTER remote sensing data for porphyry copper exploration.  Image and Data Fusion 12, 155-175. https://doi.org/10.1080/19479832.2020.1838628.
Bedini, E., 2011. Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Advances in Space Research 47, 60-73. http://dx.doi.org/10.1016/j.asr.2010.08.021.
Beiranvand Pour, A., Hashim, M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews 44, 1-9. https://doi.org/10.1016/j.oregeorev.2011.09.009.
Boardman, J. W., Kruse, F. A., Green, R. O., 1995. Mapping target signatures via partial unmixing of AVIRIS data: in Summaries, Fifth JPL Airborne Earth Science Workshop. AVIRIS workshop.
Boloki, M., Poormirzaee, M., 2010. Using ASTER image processing for hydrothermal alteration and key alteration minerals mapping. Latest Trends on Engineering Mechanics, Structures, Engineering Geology 1, 77-82. https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1734174.
Benzougagh, B., Meshram, S.G., Fellah, B.E., Mastere, M., El Basri, M., Ouchen, I., Sadkaoui, D., Bammou, Y., Moutaoikil, N., Turyasingura, B., 2023. Mapping of land degradation using spectral angle mapper approach (SAM): the case of Inaouene watershed (Northeast Morocco). Modeling Earth Systems and Environment 10, 221-231. https://doi.org/10.1007/s40808-023-01711-8.
Crosta, A.P., 1989. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State Brazil, a prospecting case history in greenstone belt terrain. In Proceedings of the 7^< th> ERIM Thematic Conference on Remote Sensing for Exploration Geology, 1989.
Crosta, A.P., De Souza Filho, C.R., Azevedo, F., Brodie, C., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Remote Sensing 24, 4233–4240. http://dx.doi.org/10.1080/0143116031000152291.
Chen, B., Liu, L., Zou, Z., Shi, Zh., 2023. Target Detection in Hyperspectral Remote Sensing Image: Current Status and Challenges. Remote Sensing 15, 3223. https://doi.org/10.3390/rs15133223.
Fereydooni, H., Mojeddifar, S., 2017. A directed matched filtering algorithm (DMF) for discriminating hydrothermal alteration zones using the ASTER remote sensing data, ELSEVIER,
Ghaffary, M., 2010. Petrology and geochemistry of the Zafarghand Granitoid Massif (Southeast of Ardestan). M. Sc. thesis, Faculty of Earth Sciences - Petrology, Shahrood University of Technology.
Gahlan, H., Ghrefat, H., 2017. Detection of Gossan Zones in Arid Regions Using Landsat 8 OLI Data: Implication for Mineral Exploration in the Eastern Arabian Shield, Saudi Arabia. Natural Resources Research 27, 109–124. https://doi.org/10.1007/s11053-017-9341-8.
Goetz, A., Billingsley, F., Elston, D., Lucchitta, I., Shoemaker, E., Abrams, M., Gillespie, A., Squries, R., 1975. Applications of ERTS Image and Image Processing to Regional Problems and Geologic Mapping in Northern Arizona. Jet Propulsion Laboratory 32-1597, NASA: Pasadena, CA, USA.
Gupta, R. 2003. Remote sensing geology. Second edition, Springer, 655. https://doi.org/10.1007/978-3-662-05283-9.
Guha, A., Chatterjee, S., Oommen, T., Kumar, K.V., Roy, S.K., 2021. Synergistic use of ASTER, L-band ALOS PALSAR, and Hyperspectral AVIRIS-NG data for exploration of lode type gold deposit–a study in Hutti Maski Schist Belt, India. Ore Geology Reviews 128, 103818. https://doi.org/10.1016/j.oregeorev.2020.103818.
Guanji, N., 2010. Investigating the mechanism of substitution of granitoid massif in south Zafarghand (Ardestan) using AMS method.  M. Sc. Thesis, Shahrood University of Technology.
Green, A.A., Berman, M., Switzer, P., Craig, M.D., 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on geoscience and remote sensing 26, 65–74. https://doi.org/10.1109/36.3001.
Habashi, J., Oskouei, M.M., Jamshid Moghadam, H., 2024. Classification of ASTER Data by neural network to mapping alterations related to copper and iron mineralization in Birjand. Mining and Environment 15, 649-665.  10.22044/jme.2023.13640.2520.
Hasan, B.M.S., Abdulazeez, A.M., 2021. A review of principal component analysis algorithm for dimensionality reduction Soft Computing and Data Mining 2, 20-30. https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/8032
Hewson, R.D., Cudahy, T.J., Mizuhiko, S., Ueda, K., Mauger, A.j., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment 99, 159-172. http://dx.doi.org/10.1016/j.rse.2005.04.025.
Honarmand, M., Moayyed, M., Jahangiri, A., Bahadaran, N., 2010. Investigation of Geochemical Characteristics of the Intrusive Suite of Natanz, North of Isfahan, Petrology, 65-88.
John, D.A., Ayuso, R.A., Barton, M.D., Blakely, R.J., Bodnar, R.J., Dilles, J.H., Gray, Floyd, Graybeal, F.T., Mars, J.C., McPhee, D.K., Seal, R.R., Taylor, R.D., Vikre, P.G., 2010. Porphyry copper deposit model, chap. B of Mineral deposit models for resource assessment, U.S. Geological Survey Scientific Investigations Report 2010, 5070–B, 169.
Jabbari, A., Ghorbani, M., Koepke, Y., Tarabi, Gh., Shirdashtzadeh, N., 2010. Petrography and mineral chemistry of the outer west dikes (Southeast of Ardestan, Iran), Evidence of Magmatic Mixing. Petrology 17-29. https://ijp.ui.ac.ir/article_16038.html.
Jennings, H., Slade, M., Bates, P., Munday, E., Toney, R., 2018. Best practice framework for Patient and Public Involvement (PPI) in collaborative data analysis of qualitative mental health research, methodology development and refinement. BMC Psychiatry 18, 1-11. https://doi.org/10.1186/s12888-018-1794-8.  
Joseph, W., 1994. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada, In 10th Thematic Conference on Geologic Remote Sensing, Ann Arbor, 1407-1418.
Kruse, F. A., Boardman, J. W., Lefkoff, A. B., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J. and Goetz, A. F. H., 1993. The Spectral Image Processing System SIPS Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment 44, 145-163. https://doi.org/10.1016/0034-4257(93)90013-N.
Khalatbari Jafari, M., 1992. Plutonism in the Ardestan Region. M. Sc. thesis, Shahid Beheshti University, Tehran, Iran.
Luo, G., Chen, G., Tian, L., Qin, K., Qian, S.E., 2016. Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Canadian Journal of Remote Sensing 42, 106–116. http://dx.doi.org/10.1080/07038992.2016.1160772.
Latifi, R., 2000. Geological, petrological, and geochemical study of intrusive bodies in the south and northwest of Zafarghand. M. Sc. thesis, University of Isfahan, Isfahan, Iran.
Li, Q., Zhang, B., Lu, L., Lin, Q., 2014. Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China. IOP Conference Series: Earth and Environmental Science. IOP Publishing 17, 012174. http://dx.doi.org/10.1088/1755-1315/17/1/012174.
Li, S., Gao, L., Xia, F., Chen, C., Du, X., Arkin, A., 2023. Genetic relationship between skarn and porphyry mineralization at the Saibo copper deposit, West Tianshan, NW China: Constraints from fluid inclusions, H–O–C–S–Pb isotopes, and geochronology. Ore Geology Reviews 105709. https://doi.org/10.1016/j.oregeorev.2023.105709.
Lee, C.T.A., Tang, M., 2020. How to make porphyry copper deposits. Earth and Planetary Science Letters 529, 115868. https://doi.org/10.1016/j.epsl.2019.115868.
Malekshahi, Sh., Rasa, I., Rashidnejad Omran, N., Lotfi, M., 2019. Investigation of satellite image processing results for alteration with field evidences in Sarkouh porphyry copper deposit. Iranian Remote Sensing & GIS 10, 1-26 (In Persian(. https://doi.org/10.22055/aag.2019.29579.1986.
Mars, J.C., Rowan, L.C., 2006, Regional mapping of phyllic and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2, 161–186. https://doi.org/10.1130/GES00044.1.
Moradi, R., Boomeri, M., 2017. Remote sensing detection of altered zones associated with Cu-Mo mineralization in North of Zahedan, SE Iran using Landsat-8 data. Yerbilimleri 38, 275-294. https://dergipark.org.tr/en/pub/yerbilimleri/issue/39251/462194.
Mohammadi, S., Nadimi, A.R., Aalaminia, Z., 2018. Analysis of the relationship between mineralization and alteration zones with tectonic structures using remote sensing studies in south Ardestan area (northeastern Isfahan). Tectonics 2, 29-47. http://dx.doi.org/10.22077/JT.2020.2434.1013.
Mohammadi, S., 1995. Investigation of Volcanism in the Ardestan Region (Central Iran). M. Sc. thesis, Shahid Beheshti University, Tehran, Iran.
Moradpour, H., Rostami Paydar, G., Pour, A.B., Valizadeh Kamran, K., Feizizadeh, B., Muslim, A.M.,  Hossain, M.S., 2022. Landsat-7 and ASTER remote sensing satellite imagery for identification of iron skarn mineralization in metamorphic regions, Geocarto International 37, 1971-1998, 10.1080/10106049.2020.1810327.
Moradpour, H., Rostami Paydar, G., Feizizadeh, B., Blaschke, T., Pour, A.B., Valizadeh Kamran, K., Muslim, A. M., Hossain, M. S., 2021. Fusion of ASTER satellite imagery, geochemical and geology data for gold prospecting in the Astaneh granite intrusive, West Central Iran.  Image and Data Fusion 13, 71-94. 10.1080/19479832.2021.1915395.
Nasr Esfahani, A., Vahabi, M.B., 2010. Tectonic and magmatic settings of the Oligocene felsic outcrops in the south of Ardestan NE of Isfahan. Petrology, 95-107. https://sid.ir/paper/196894/en.
Nandasena, W. D. K. V., Brabyn, L., Serrao-Neumann, S., 2023. Using remote sensing for sustainable forest management in developing countries. In The Palgrave Handbook of Global Sustainability, 487-508. https://doi.org/10.1007/978-3-031-01949-4_35.
Oleson, R., Doescher, Ch., 2022. Advance Spaceborne Thermal emission and reflection radiometer (ASTER) Level 1 Precisin Terrain Corrected Registered At-sensor Radiance Product (AST_L1T). Department of the Interior U.S Geological Survey, 16. https://doi.org/10.3133/OFR20151171.
Oliva, F., D’Aversa, E., Bellucci, G., Carrozzo, F.G., Ruiz Lozano, L., et al., 2023. Minimum noise fraction analysis of TGO/NOMAD LNO channel high-resolution nadir spectra of Mars. Remote Sensing 15, 5741. https://doi.org/10.3390/rs15245741.
Parasath, L.R., Kusuma, K.N., 2018. Lithological Mapping using Landsat 8 OLI and ASTER TIR Multispectral Data, a comparative study. International Journal of Advanced Remote Sensing and GIS 7, 2728-2745. http://dx.doi.org/10.23953/cloud.ijarsg.369.
Pordel, F., Ebrahimi, A., Azizi, Z., 2019. The effect of atmospheric correction methods on the relationship between vegetation indices and canopy cover (Case study: Marjan rangelands of Borujen). Geospatial Information Technology (2019), 133-153. http://dx.doi.org/10.29252/jgit.7.2.133.
Ranjbar, H., Honarmand, M., 2004. Integration and analysis of airborne geophysical and ETM+ data for exploration of porphyry type deposits in the Central Iranian Volcanic Belt using fuzzy classification. Remote Sensing 25, 4729-4741. https://doi.org/10.1080/01431160410001709011.
Ranjbar, H., 2011. Application of spectral analysis in mapping hydrothermal alteration of the northwestern part of the Kerman Cenozoic Magmatic Arc, Iran. Sciences, Islamic Republic of Iran 22, 221- 238.
Ramsey, M.S., Flynn, I.T., 2020. The spatial and spectral resolution of ASTER infrared image data: A paradigm shift in volcanological remote sensing. Remote Sensing 12, 738.  https://doi.org/10.3390/rs12040738.
Sabbaghi, H., Moradzadeh, A., Asadi Haron, H., 2017. ASTER spectral analysis for host rock associated with porphyry copper-molybdenum mineralization. Geologica Macedonica 31, 49-65. http://dx.doi.org/10.1007/s12594-018-0914-x.
Salehi, T., Tangestani, M.H., 2020. Evaluation of WorldView-3 VNIR and SWIR data for hydrothermal alteration mapping for mineral exploration: case study from northeastern Isfahan, Iran. Natural Resources Research 29, 3479–3503. https://doi.org/10.1007/s11053-020-09703-6.
Sadeghian, M., Ghaffary, M., 2011. Petrogenesis of the Zafarghand granitoid massif (southeast of Isfahan). Petrology 47-70. https://sid.ir/paper/380845/en.
Shahriari, H., Ranjbar, H., Honarmand, M., Carranza, E.J.M., 2014. Selection of less biased threshold angles for SAM classification using the real value–area fractal technique. Resource Geology 64, 301-315. http://dx.doi.org/10.1111/rge.12042.
Shahi, H., Ghavami, R., Rouhani, A.K., 2015.  Detection of deep and blind mineral deposits using new proposed frequency coefficients method in frequency domain of geochemical data.  Geochemical Exploration 162, 29-3. https://doi.org/10.1016/j.gexplo.2015.12.006.
Titley, S.R., Hicks, C.L., 1966. Geology of the porphyry deposits, Southwestern North America. Tuson: Univ, Ariz Prees, 287. https://nla.gov.au/nla.cat-vn2234765.
Tsubomatsu, H., Hideyuki T., 2023. Region expansion of a hyperspectral-based mineral map using random forest classification with multispectral data. Minerals 13, 754. https://doi.org/10.3390/min13060754.
Tabelin, C.B., Park, I., Phengsaart, T., Jeon, S., Villacorte-Tabelin, M., Alonzo, D., Yoo, K., Ito, M., Hiroyoshi, N., 2021. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling 170, 105610. https://doi.org/10.1016/j.resconrec.2021.105610.
Wang, C., Zhang, H., Xu, Q., Cao, W., Wang, J., Li, D., Lou, X., 2022. Inversion of the refractive index of marine spilled oil using multi-angle sun glitter images acquired by the ASTER sensor. Remote Sensing of Environment 275, 113019. https://doi.org/10.1016/j.rse.2022.113019.
Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming mineral. American Mineralogist 95, 185-187. https://doi.org/10.2138/am.2010.3371.
Wilkinson, J.J., Baker, M.J., Cooke, D.R., Wilkinson, C.C., 2020. Exploration targeting in porphyry Cu systems using propylitic mineral chemistry: A case study of the El Teniente deposit, Chile. Economic Geology 115, 771-791. https://doi.org/10.5382/econgeo.4738.
Yeganeh Far, H., Ghorbani, M. R., 2010. Geochemical characteristics and petrogenesis of basement rocks in southern ardestan. 29th Geological Congress, Geological Survey and Mineral Exploration Organization of Iran, Tehran, Iran.
Zhang, X., Li, P., 2014. Lithological mapping from hyperspectral data by improved use of spectral angle mapper. Applied Earth Observation and Geoinformation 31, 95-109. https://doi.org/10.1016/j.jag.2014.03.007.
Zhou, P., Zhang, R., Xie, J., Liu, J., Wang, H., Chai, T., 2020. Data-driven monitoring and diagnosing of abnormal furnace conditions in blast furnace ironmaking: An integrated PCA-ICA method. IEEE Transactions on Industrial Electronics 68, 622-631. https://doi.org/10.1109/TIE.2020.2967708.