Discrimination of geochemical anomalies using the concentration-number (C-N) fractal method and remote sensing in the Sonajil porphyry Cu deposit, Heris, NW Iran

Authors

1 Department of Geology of Mineral and water resources. Shahid Beheshti university

2 Department of Geology of mineral and water resources. Shahid Beheshti University ، Tehran, Iran

3 Department of Geology of mineral and water resources. Shahid Beheshti University, Tehran, Iran

4 Department of geology, Payame Noor University,Tehran, Iran

Abstract

The Sonajil porphyry Cu deposit is 15 km east of Harris City in East Azerbaijan province. Mineralization has often been reported as hydrothermal of various origins and structural geological control of Cu metal in the region. Geochemical exploration is beneficial and cost-effective for surveying metal deposits on a regional scale. To achieve this, the concentration-number fractal geometric method is used, which takes into account the spatial position and the pattern of geochemical data distribution. In geochemical communities resulting from the decomposition of copper metal in 1224 samples of sediments, the minimum and maximum grade for Cu metal is 160 ppm and 5600 ppm, respectively. In the next step, using remote sensing studies and processing of ASTER satellite images, the hydrothermal alterations of the region were identified. For this purpose, the range of visible to infrared waves of short wave (VNIR-SWIR) of ASTER images has been used to identify argillic, and propylitic alterations. The results showed that argillic alteration was more extensive than other alterations in the region and significantly affected the formation of the Sonajil Cu deposit. In general, the results of these methods showed that the concentration of Cu metal increases in the south and southwest and in these areas the concentration of Cu metal is very high; The severity of geochemical anomalies has increased near geological structures such as faults and shear zones. Field control indicates a high probability of mineral reserves in the target areas.

Keywords

Main Subjects


Afzal, P., Yasrebi, A.B., Saein, L.D., Panahi, S., 2017. Prospecting of Ni mineralization based on geochemical exploration in Iran. Journal of Geochemical Exploration 181, 294-304. https://doi.org/10.1016/j.gexplo.2016.10.003.
Aghazadeh, M., 2014. Geological map of Sonajeel porphyry copper deposit and surrounding area with 1:5000 scale. Kumeh Madaneh Pars Company (in Persian with English Abstract). https://doi.org/10.1016/j.oregeorev.2022.105251.
Aghazadeh, M., Castro, A., Badrzadeh, Z., Vogt, K., 2011. Post-collisional polycyclic plutonism from the Zagros hinterland: The Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine 148: 980-1008. http://dx.doi.org/10.1017/s0016756811000380.
Agterberg, F.P., Cheng, Q., Brown, A., Good, D., 1996. Multifractal modeling of fractures in the Lac du Bonnet batholith, Manitoba. Computers & Geosciences 22(5), 497-507. https://doi.org/10.1016/0098-3004(95)00117-4.
Alavipanah, S.K., 2012. Principles of modern remote sensing and interpretation of satellite images and aerial photographs. Tehran: University of Tehran Printing and Publishing Institute.
Asiabanha, A. Foden, J., 2012. Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos 148, 98-111. https://doi.org/10.1016/j.lithos.2012.05.014
Azizi, H., Tarverdi, M.A., Akbarpour, A., 2010. Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Advances in Space Research 46(1), 99-109. https://doi.org/10.1016/j.asr.2010.03.014.
Baba Ahmadi, A. 1999. Applications of Remote Sensing (RS) in Geology. Tehran: Avaye Qalam.
Babakhani, A. R., Lesquyer, J. L., Rico, R., 1976. Ahar Quadrangle (scale 1:250,000). Geological Survey of Iran, Tehran, Iran 62: 547-562 https://doi.org/10.2478/v10096-011-0039-2.
Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration 51(2), 109-130. https://doi.org/10.1016/0375-6742(94)90013-2
Cheng, Q., Ping, Q., Kenny, F., 1997. Statistical and fractal analysis of surface stream patterns in the Oak Ridges Moraine, Ontario, Canada. In Proceedings of the International Association of Mathematical Geology Meeting, Barcelona. 1, 280-286. https://doi.org/10.1016/S0098-3004(00)00112-6.
Crosta, A.P., De Souza Filho, C.R., Azevedo, F., Brodie, C., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing 24(21), 4233-4240. https://doi.org/10.1080/0143116031000152291
Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q., Liu, H., 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration 105(3), 95-105. https://doi.org/10.1016/j.gexplo.2010.04.005.
El Janati, M., 2019. Application of remotely sensed ASTER data in detecting alteration hosting Cu, Ag and Au bearing mineralized zones in Taghdout area, Central Anti-Atlas of Morocco. Journal of African Earth Sciences 151, 95-106. https://doi.org/10.1016/j.jafrearsci.2018.12.002.
Goetz, A.F., Rock, B.N., Rowan, L.C., 1983. Remote sensing for exploration; an overview. Economic Geology 78(4), 573-590. https://doi.org/10.2113/gsecongeo.78.4.573.
Hassanpour, S., 2010. Metallogenesis and mineralization of copper-gold deposits in Arsbaran magmatic zone, East Azarbaijan, Northwest Iran. PhD Thesis, Faculty of Earth Sciences, Shahid Beheshti University.
Hassanpour, S., Senemari, S., Roomi, N., 2022. Delineation of mineralization zones by multivariate fractal and zonality modeling in south of the Sungun and Kighal porphyry systems, NW, Iran. Arabian Journal of Geosciences 15(8), 703. https://doi.org/10.1007/s12517-022-09845-2.
Hewson, R.D., Cudahy, T.J., Mizuhiko, S., Ueda, K., Mauger, A.J., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment 99(1-2), 159-172. https://doi.org/10.1016/j.rse.2005.04.025.
Hezarkhani, A., 2003. Exploration of Sonajil copper deposit, Iranian company of copper, northwestern report exploration 21(81), 31-36. https://doi.org/10.22071/gsj.2011.54200.
Hezarkhani, A., 2007. Hydrothermal Evolution in Sonajil Porphyry Copper System (East Azarbaijan Province, Iran): The History of an Uneconomic Deposit. Journal of International Geology Review, Stanford-USA. https://doi.org/10.1007/s12517-011-0453-x.
Jaafari, M.A., Kananian, A., Nazarpour, A., 2019. Discrimination of Pb and Zn metals geochemical anomalies using classical statistical (Mean+ nSTEV), Singularity Index, remote sensing and structural factors method in Khondob 1: 100000 sheet, northern part of Malayer-Aligoudarz-Esfahan zone. Advanced Applied Geology 9(3), 341-356. https://doi. org 10.22055/AAG.
Khoei, N., Qurbani, M., Tajbakhsh, P., 1999. Tehran: Copper Deposits in Iran. Organization of Geology and Mineral Explorations of Iran.
Liu, Y., Xia, Q., Carranza, E.J.M., 2019. Integrating sequential indicator simulation and singularity analysis to analyze uncertainty of geochemical anomaly for exploration targeting of tungsten polymetallic mineralization, Nanling belt, South China. Journal of Geochemical Exploration 197, 143-158. https://doi.org/10.1016/j.gexplo.2018.11.012.
Loughlin, W.P., 1991, Principal component analysis for alteration mapping, Photogrammetric Engineering and Remote Sensing 57, 1163-1169. https://doi.org/10.1080/01431160600905003.
Mahdavi, M.A., Amini Fazl, A., 1989. Geological Map of Ahar Quadrangle (scale 1:100,000). Geological Survey of Iran, Tehran Iran 8: 100-109. https://doi.org/10.1016/j.jaesx.2022.100109.
Mandelbrot, B.B., Mandelbrot, B.B., 1982. The fractal geometry of nature, Times Books New York, 468 P.
Meyer, C., Hemley, J., 1967, Wall rock alteration, Geochemistry of hydrothermal ore deposits: New York, Holt. Rinehart and Winston 31, 166-235.
Nabavi, M. H. 1976. An Introduction to the Geology of Iran. Geological Survey of Iran, Tehran, Iran.
Nazarpour, A., Sadeghi, B., Sadeghi, M., 2015. Application of fractal models to characterization and evaluation of vertical distribution of geochemical data in Zarshuran gold deposit, NW Iran. Journal of Geochemical Exploration 148, 60-70. https://doi.org/10.1016/j.
Rouskov, K., Popov, K., Stoykov, S., Yamaguchi, Y., 2005, June. Some applications of the remote sensing in geology by using of ASTER images. In scientific conference “SPACE, ECOLOGY, SAFETY” with Int. Participation. 167-173. https://doi.org/10.22055/AAG.
Rowan, L.C., Hook, S.J., Abrams, M.J., Mars, J.C., 2003. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system. Economic Geology 98(5), 1019-1027.https://doi.org/10.2113/98.5.1019.
Sabins, F. F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews 14, 157-183. https://doi.org/10.1016/S0169-1368(99)00007-4.
Shahabpour, J., 2005. Economic geology. Kerman: Bahonar Kerman University.
Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52(3/4): 591-611. https://doi.org/10.2307/2333709.
Sillitoe, R.H., 2010. Porphyry copper system, Society of Economic Geologist, inc. Economic geology 105: 3-41. http://dx.doi.org/10.2113/gsecongeo.105.1.3.
Tosdal, R.M., Richards, J.P., 2001. Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits: Reviews in Economic Geology 14, 157-181. https://doi.org/10.5382/SP.24.01.
Ranjbar, H., Shahriari, H. and Honarmand, M, 2003, Comparison of ASTER and ETM+ data for exploration ofporphyry copper mineralization: A case study of Sar Cheshmeh areas, Kerman, Iran. 8, 673-596. https://doi.org/10.22067/econg.v10i1.53510.
Zuo, R., Wang. J., 2016. Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration 164, 33-41. https://doi.org/10.1016/j.gexplo.2015.04.010.