پترولوژی و ژئوشیمی سرپانتینیت های افیولیت ملانژ دالامپر، شمال غرب ایران: با نگرشی بر تحولات ژئودینامیک و فرآیندهای متاسوماتیک مرتبط با فعل و انفعالات سیال/سنگ-مذاب.

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی معدنی و آب، دانشکده علوم زمین، دانشگاه شهید بهشتی

2 هیات علمی/ دانشگاه شهید بهشتی

3 هیات علمی/ دانشگاه تحصیلات تکمیلی علوم پایه زنجان

4 گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

افیولیت دالامپر بخش ناشناخته ای از افیولیت نئو تتیس است و در شمال غرب ایران بین افیولیت های پیرانشهر و سلماس در داخل کمربند دگرگونی سنندج - سیرجان قرار دارد. پریدوتیت های سرپایینی شده، بازالت بالشی، گابروهای مختلف، سنگ آهک پلاژیک و رادیولاریت همراه با واحدهای رسوبی-آتشفشانی از انواع سنگ های اصلی در این منطقه هستند. این واحدهای سنگی در بیشتر نقاط به صورت تکتونیکی و آمیزه رنگین در هم آمیخته شده اند. پریدوتیت های مجموعه تحت تاثیر دگرسانی گرمابی به صورت کامل و یا بخشی با سرپانتینیت جایگزین شده اند. سرپانتینیت های دالامپر روند پریدوتیت های دگرگونی شاخص با ترکیب پروتولیت هارزبورژیت و دونیتی از خود نشان می دهند. ویژگی های ژئوشیمیایی از جمله غنی شدگی از LILE-LREE، تهی شدگی از HFSE و الگوی U شکل عناصر نادرخاکی بهنجار شده به کندریت با مقادیر (La/Sm)N > 1 and (Gd/Yb)N < 1 حاکی از فرآیندهای پتروژنتیکی چند مرحله ای از جمله بارورسازی گوه گوشته ای تهی شده و دیرگداز به وسیله سیالات مشتق از فرورانش و مذاب های گوشته بونینیتی در یک محیط جلوقوس داخل اقیانوسی می باشد. نمودار فازی محاسبه شده برای نمونه های مورد مطالعه نشان می دهد که این سرپانتینیت ها احتمالا در طی دو رویداد دگرگونی شکل گرفته اند؛ رویداد اول شامل دگرسانی و آبگیری هارزبورژیت تا دماهای کمتر از 300 درجه سانتیگراد و فشار کمتر از 4 کیلوبار است. رویداد دوم در نتیجه افزایش دما و فشار تا بیشتر از 400 درجه سانتیگراد و 4 کیلوبار رخ داده است.

کلیدواژه‌ها

موضوعات


Allahyari, K., E. Saccani, M. Pourmoafi, L. Beccaluva, F. Masoudi., 2010. Petrology of mantle peridotites and intrusive mafic rocks from the Kermanshah ophiolitic complex (Zagros belt, Iran): Implications for the geodynamic evolution of the Neo-Tethyan oceanic branch between Arabia and Iran. Ofioliti 35(2), 71-90. https:// doi.org/10.4454/ofioliti.v35i2.387.
Alavi, M., 1972. Etude geologique de la region de Djam. Geological Survey of Iran, Report, 23,1-288
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics 229, 211-238. https:// 10.1016/0040-1951(94)90030-2.
Aldanmaz, E., Yaliniz, M.K., Güctekin, A., Göncüo_glu, M.C., 2008. Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey: implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine 145, 37-54. https:// 10.1017/S0016756807003986
Ali, S.A., Buckman, S., Aswad K.J., Jones, B.G., Ismail., S.A., Nutman, A., 2013. The tectonic evolution of a N eo‐T ethyan (Eocene–Oligocene) island‐arc (W alash and N aopurdan groups) in the K urdistan region of the N ortheast Iraqi Zagros Suture Zone. Island Arc 22(1), 104-125. https:// doi.org/10.1111/iar.12007
Ali, S.A., Nutman A.P., Aswad, KJ. and Jones B.G., 2019. Overview of the tectonic evolution of the Iraqi Zagrosthrust zone: Sixty million years of Neotethyan ocean subduction. Journal Geodynamics 129, 162-177. https:// doi.org/10.1016/j.jog.2019.03.007
Andreani, M., Mével, C., Boullier, A.-M., Escartín, J. 2007. Dynamic control on serpentine crystallization in veins: Constraints on hydrationprocesses in oceanic peridotites. Geochemistry, Geophysics, Geosystems 8(2), 24. https://doi.org/10.1029/2006GC001373
Ao, S., Xiao, W., Khalatbari-Jafari, M., Talebian, M., Chen, L., Wan, B., Weiqiang, J., Zhang, Z., 2016. U-Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): from continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neo-Tethys. Gondwana Research 31, 305-318. https:// 10.1016/j.gr.2015.01.014
Ao, S., Mao, Q., Khalatbari-Jafari, M., Windley, B.F., Song, D., Zhang, Z., Zhang, J., Wan, B., Han, C. and Xiao, W., 2020. U–Pb age, Hf–O isotopes, and geochemistry of the Sardasht ophiolite in the NW Zagros orogen: Implications for the tectonic evolution of Neo‐Tethys. Geological Journal 56, 1315-1329. https:// 10.1002/gj.4011
Arabshahi, A. H .and Sabzeie, M., 2013. Geological 1:25000 map of Silvaneh1. No.4964 II NW: Geological Survey of Iran. Tehran.
Arai, Sh., Ishimaru, S., 2008. Insights into Petrological Characteristics of the Lithosphere of Mantle Wedge beneath Arcs through Peridotite Xenoliths: A Review. Journal of Petrology 49(4), 665-695.https://doi.org/10.1093/petrology/egm069
Aswad, KJ, Aziz, NR, Koyi HAJGm., 2011.Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine 148, 802-818. https:// 10.1017/S0016756811000422
Auzende, A., Escartin, J., Walte, N.P., Guillot, S., Hirth, G., Frost, D.J., 2015. Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks. Earth Planet Sci Lett 411, 229-240. https://doi.org/10.1016/j.epsl.2014.11.053.
Azer, M.K., and Khalil, A.E., 2005. Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid area, central Eastern Desert, Egypt. Journal of African Earth Science 43, 525–536. https:// 10.1016/j.jafrearsci.2005.09.008
Azer, M.K., and Stern, R.J., 2007. Neoproterozoic (835-720 Ma) serpentinites in the Eastern Desert, Egypt: Fragments of forearc mantle. Journal of Geology 115(4), 457-472. https:// 10.1086/518052
Azizi, H., Lucci, F., Stern, R. J., Hasannejad, S., Asahara, Y., 2018. The Late Jurassic Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone, Northwest Iran: Mantle plume or active margin? Lithos 308, 364-380. https://doi.org/10.1016/j.lithos.2018.03.019.
Bach, W., Garrido, C.J., Paulick, H., Harvey, J., Rosner, M., 2004. Seawater–peridotite interactions: First insightsfrom ODP Leg 209, MAR 15N. Geochemistry, Geophysics, Geosystems 5, Q09F26. https://doi.org/10.1029/2004GC000744.
Barnes, J.D., Beltrando, M., Lee, C.T.A., Cisneros, M., Loewy, S., Chin, E., 2014. Geochemistry of Alpine serpentinites from rifting to subduction: A view across paleogeographic domains and metamorphic grade. Chemical Geology 389, 29-47. https://doi.org/10.1016/j.chemgeo.2014.09.012
Becker, H., Horan, M.F., Walker, R.J., Gao, S., Lorand, J.P., Rudnick, R.L., 2006. Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths. Geochimica et Cosmochimica Acta 70, 4528-4550. https://10.1016/j.gca.2006.06.004
Bellot, J,Ph., 2008. Natural deformation related to serpentinisation of an ultramafic inclusion within a continental shear zone: The key role of fluids. Tectonophysics 449(1-4), 133-144 https:// 10.1016/j.tecto.2007.11.054
Bodinier, J.L., Dupuy, C., Dostal, J., 1988. Geochemistry and petrogenesis of Eastern Pyrenean peridotites. Geochimica et Cosmochimica Acta 52, 2893-2907. https:// 10.1016/0016-7037(88)90156-1
Bodinier, J.L., Godard, M., 2003. Orogenic, ophiolitic, and abyssal peridotites. Treatise on Geochemistry 2, 568. https://10.1016/B0-08-043751-6/02004-1
Boschi, C., Früh-green, G.L., Escartín, J., 2006. Occurrence and significance of serpentinite-hosted, talc-rich fault rocks in modern oceanic settings and ophiolite complexes. Ofioliti 31, 129-140. https:// doi.org/10.4454/ofioliti. v31i2.335
Cannaò, E., Scambelluri, M., Agostini, S., Tonarini, S., Godard, M., 2016. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy). Geochimica et Cosmochimica Acta 190, 115-133. https://doi.org/10.1016/j.gca.2016.06.034.
Caran, S., Çoban, H., Flower, M.F., Ottley, C.J., Yılmaz, K., 2010. Podiform chromitites and mantle peridotites of the Antalya ophiolite, Isparta Angle (SW Turkey): implications for partial melting and melterock interaction in oceanic and subduction-related settings. Lithos 114, 307-326. https:// 10.1016/j.lithos.2009.09.006
Casini, G., Gillespie, P.A., Vergés, J., Romaire, I., Fernndez, N., Casciello, E., Saura, E., Mehl, C., Homke, S., Embry, J.C., Aghajari, L., Hunt, D.W., 2011. Sub-seismic fractures in foreland fold and thrust belts: Insight from the Lurestan Province, Zagros Mountains, Iran. Petroleum Geoscience 17, 263-282. https:// 10.1144/1354-079310-043
Coleman, R.G., 1977. What is an ophiolite? In: Ophiolites. Springer, Berlin Heidelberg, pp. 1-7.
Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M., Hattori, K., 2010. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology 269, 262-277. https:// 10.1016/j.chemgeo.2009.10.002
Deschamps, F., Godard, M., Guillot, S., Hattori, K., 2013. Geochemistry of subduction zone serpentinites: a review. Lithos 178, 96-127. https:// 10.1016/j.lithos.2013.05.019
Dilek, Y., 2003. Ophiolite concept and its evolution. Special Papers-Geological Society of America 1-16. https:// 10.1130/0-8137-2373-6.1
Dilek, Y., Furnes, H., Shallo, M., 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research 453-475. https:// 10.1016/j.gr.2007.01.005
Dilek, Y., Furnes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100, 174-209. https:// 10.1016/j.lithos.2007.06.026
Dilek, Y., Furnes, H., 2009. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 113, 1-20. https:// 10.1016/j.lithos.2009.04.022
Dilek, Y., Furnes, H., 2014. Ophiolites and their origins. Elements 10, 93-100.
Evans, B.W., 2004. The serpentinite multisystem revised: chrysotile is metastable: International Geology Review 46, 479-506. https:// 10.2747/0020-6814.46.6.479
Evans, B.W., Hattori, K., Baronnet, A., 2013. Serpentinite: what, why, where. Elements 9, 99-106. 10.2113/gselements.9.2.99.http:// 10.2113/gselements.9.2.99
Falloon, T.J., Danyushevsky, L.V., 2000. Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for high-Ca boninites and the influence of subduction components on mantle melting. Journal of Petrology 41, 257-283. https:// 10.1093/petrology/41.2.257
Falloon, T.J., Danyushevsky, L.V., Crawford, A.J., Meffre, S., Woodhead, J.D., Bloomer, S., H., 2008. Boninites and adakites from the northern termination of the Tonga trench: Implications for adakite petrogenesis. Journal of Petrology 49,697-715. https:// 10.1093/petrology/egm080
Fischer-Gödde, M., Becker, H., Wombacher, F., 2011. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chemical Geology 280 (3), 365-383. https:// 10.1016/j.chemgeo.2010.11.024
Frost, B.R., Evans, K.A., Swapp, S.M., Beard, J.S. Mothersole, F.E., 2013. The process of serpentinization in dunite from New Caledonia: Lithos 178, 24-39. https://10.1016/j.lithos.2013.02.002
Gahlan, H. A., Arai, S., Ahmed, A. H., Ishida, Y., Abdel-Aziz, Y.M. and Rahimi, A., 2006. Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: An implication for mobility of iron during serpentinization. Journal of African Earth Sciences 46, 318-330. https:// doi.org/10.1016/j.jafrearsci.2006.06.003
Ghalamghash, J., Vousoughi Abedini, M., Houshmand Manavi, S., 2013. Geochemistry and Petrogenesis of Oshnavieh Plutonic Complex, Scientific Quarterly Journal, Geosciences 22, 205-218. https:// https://doi.org/10.22071/gsj.2013.53696
Ghasemi, A., Talbot, C.J. 2006. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26, 683-693. https:// doi.org/10.22071/gsj.2013.53696
Ghazi, J.M., Mozzen, M., Rahgoshay, M., Shafaii Moghadam, H., 2012. Geochemical characteristics of basaltic rocks from the Nain ophiolite (Central Iran); constraints on mantle wedge source evolution in an oceanic back arc basin and a geodynamical model. Tectonophysics 574-575, 92-104. https:// 10.1016/j.tecto.2011.10.001
Groppo, C., Rinaudo, C., Cairo, S., Gastaldi, D., Compagnoni, R., 2006. Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. European journal of  Mineralogy 18, 319–329. https:// 10.1127/0935-1221/2006/0018-0319
Guillot, S., Hattori, K.H., de Sigoyer, J., 2000. Mantle wedge serpentinization and exhumation of eclogites: insights from eastern Ladakh, northwest Himalaya. Geology 28, 199-202. https:// 10.1130/0091-7613(2000)028<0199:MWSAEO>2.3.CO;2
Guillot, S., Schwartz, S., Reynard, B., Agard, P. and Prigent, C., 2015. Tectonic significance of serpentinites: Tectonophysics 646, 1-19. https:// 10.1016/j.tecto.2015.01.020
Golonka, J. 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381, 235-273. https:// 10.1016/j.tecto.2002.06.004
Hajialioghli, R., Moazzen., M. 2014. Supra-subduction and mid-ocean ridge peridotites from the Piranshahr area, NW Iran. Journal of Geodynamics 81, 41-55. https:// 10.1016/j.jog.2014.06.003
Hajmolla Ali, E., Shahrabi, M., Tahooneh, M., Shokri, S., 2006.Silvana, geological quadrangle map, 1:100000 scale. Geological Survey of Iran.
Hassanzadeh, J., Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics 35(3), 586-621. https:// 10.1002/2015TC003926
Hattori, K.H., Guillot, S., 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 31, 525-528. https:// 10.1130/0091
Hattori, K. H., Guillot, S., 2007. Geochemical character of serpentinites associated with high- to ultrahigh- pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Earth science 8, 1525-2027. https:// 10.1029/2007GC001594
Hawkins, J, W., 2003.Geology of supra-subduction Zones-Implications for the origin of ophiolites. Geological Society of America 373, 227-268. doi: 10.1130/0-8137-2373-6.227. https:// 10.1130/0-8137-2373-6.227
Hickey, R.L., Frey, F.A., 1982. Geochemical characteristics of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta 46, 2099-2115.
Hilairet, N., Reynard, B., Wang, Y., Daniel, I., Merkel, S., Nishiyama, N. and Petitgirard, S., 2007. High-pressure creep of serpentine, inter seismic deformation, and initiation of subduction. Science 318(5858), 1910-1913. https:// 10.1126/science.1148494
Holland. J.B., Powell, R.,1985. An internally consistent thermodynamic dataset with uncertainties and correlations: 2, Data and results. Journal of Metamorphic Geolog 3, 343-370. http://10.1111/j.1525-1314.1985.tb00325.x
Homke, S., J. Verges, P. van der Beek, M. Fernandez, E. Saura, L. Barbero, B. Badics, E. Labrin, 2010. Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission-track analysis: Evidence for a long-lived orogeny. Basin Research 22, 659-680. https:// 10.1111/j.1365-2117.2009.00431.x
Ishii, T., Robinson, P.T., Maekawa, H., Fiske, R., 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu -Ogasawara -Mariana forearc, Leg 125. In: Fryer, P., Pearce, J.A., Stokking, L.B., et al. (Eds.), Proc ODP Sci Results, vol. 125. Ocean Drilling Program, College Station, Texas, PP. 445-486. http:// 10.2973/odp.proc.sr.125.129.1992
Kimura, J., Yoshida, T., 2006. Contributions of slab fluid, mantle wedge and crust to the origin of quaternary lavas in the NE Japan arc. Journal of Petrology 47, 2185-2232. https:// 10.1093/petrology/egl041
Khalatbari-Jafari, M., Juteau, T., Cotton, J., 2006. Petrological and geochemical study of the late cretaceous ophiolite of Khoy (NW Iran), and related geological formations. Journal of Asian Earth Science. 27, 465-502. https:// 10.1016/j.jseaes.2005.05.006
Khalil, I. K., 2007. Chromite mineralization in ultramafic rocks of Wadi Ghadir area, Eastern Desert, Egypt: Mineralogical, microchemical and genetic studies. Neues Jahrbuch für Mineralogie - Abhandlungen Journal of Mineralogy and Geochemistry 183, 283-196. https:// 10.1127/0077-7757/2007/0074
Kodolányi, J., Pettke, T., 2011. Loss of trace elements from serpentinites during fluid-assisted transformation of chrysotile to antigorite-An example from Guatemala. Chemical Geology 284: 351-362. https:// 10.1016/j.chemgeo.2011.03.016
Konig, S., Munker, C., Schuth, S., Luguet, A., Hoffmann, J.E., Kuduon, J., 2010. Boninites as windows into trace element mobility in subduction zones. Geochimica et Cosmochimica Acta 74, 684-704.http:// 10.1016/j.gca.2009.10.011
Li, X.P., Rahn, M., Bucher, K., 2004. Serpentinites of the Zermatt–Saas ophiolite complex and their texture evolution. Journal of Metamorphic Geology 22, 159-177.http:// 10.1111/j.1525-1314.2004.00503.x
Manikyamba, C., Ray, J., Ganguly, S., Singh, M.R., Santosh, M., Saha, A., Satyanarayanan, M., 2015. Boninitic metavolcanic rocks and island arc tholeiites from the Older Metamorphic Group (OMG) of Singhbhum Craton, eastern India: geochemical evidence for Archean subduction processes. Precambrian Research 271, 138-159.http:// 10.1016/j.precamres.2015.09.028
McCollom, T.M. Bach, W., 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks: Geochimica et Cosmochimica Acta 73(3), 856-875. http:// 10.1016/j.gca.2008.10.032
McDonough, W.F., Frey, F.A., 1989. REE in upper mantle rocks. In: Lipin, B., McKay, G.R. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Chelsea, Michigan, pp. 99-145.
McDonough, W.F., Sun, S.S. 1995. The composition of the Earth; Chemical Geology 120, 223–253, https://doi.org/10.1016/0009-2541(94)00140-4.
McQuarrie, N., 2004. Crustal scale geometry of the Zagros fold-thrust belt, Iran. Journal of Structural Geology 26, 519-535.http:// 10.1016/j.jsg.2003.08.009
Moazzen, M., Rezaei-Bargoshadi, M., Yang, T.N., 2021. Early cretaceous (Albian) intra-oceanic subduction in northern branch of Neotethys in NW Iran: Zircon U-Pb geochronology and geochemistry of ophiolitic metagabbros from the Chaldoran area. Geological. Journal 56, 1638-1657. http://10.1002/gj.4018
Monsef, I., Monsef, R., Mata, J., Zhang, Z., Pirouz, M., Rezaeian, M., Esmaeili, R., Xiao, W., 2018, Evidence for an early-MORB to fore-arc evolution within the Zagros suture zone: Constraints from zircon U-Pb geochronology and geochemistry of the Neyriz ophiolite (South Iran): Gondwana Research 62, 287-305. doi:10.1016/j.gr.2018.03.002.
Mohajjel, M., Fergusson, C.L., Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. Journal of Asian Earth Sciences 21, 397-412. http:// 10.1016/S1367-9120(02)00035-4
Nabavi, M.,1976. Introductory to the Geology of Iran. Geological Survey of Iran.
Nogol-e-Sadat, M.A., Ahmadzadeh Heravi, M., Almasian, M., Poshtkouhi, M., Hushmandzadeh, A., 1993. “Tnarzira Mcp zf dici”, Scale 1:100000 Geological Survey of Iran.
Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology 45, 2423-2458.http:// 10.1093/petrology/egh068
Nouri F, Azizi H, Golonka J, Asahara Y, Orihashi Y, Yamamoto K, Tsuboi M, Anma R., 2016. Age and petrogenesis of Na-rich felsic rocks in western Iran: Evidence for closure of the southern branch of the Neo-Tethys in the Late Cretaceous, Tectonophysics 671: 151-172. http://10.1016/j.tecto.2015.12.014
O`Hanley D. S., 1996. Serpentinites records of tectonic and petrological history, Oxford University Press, Oxford, 277 p.
Padrón-Navarta, J. A., López Sánchez-Vizcaíno, V., Hermann, J., Connolly, J. A. D., Garrido, C. J., Gómez-Pugnaire, M. T., Marchesi, C., 2013. Tschermak's substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos 178, 186-196. https://doi.org/10.1016/j.lithos.2013.02.001
Parkinson, I.J., Pearce, J.A., Thirlwall, M.F., Johnson, K.T.M. and Ingram, G., 1992. Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc, Leg 125. Proceedings of Ocean Drilling Program, Scientific Results 125, 487-506. http://doi.org/10.2973/odp.proc.sr.125.183.1992
Parkinson, I.J., Pearce, J.A., 1998. Peridotites from the Izue Bonine Mariana forearc (ODP Leg 125): Evidence for mantle melting and meltemantle interaction in a supra-subduction zone setting. Journal of Petrology 39, 1577-1618. http://10.1093/petroj/39.9.1577
Parlak, O., Hock, V., Delaloye, M. 2000. Suprasubduction zone origin of the Pozanti-Karsanti ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. In: Tectonics and Magmatism in Turkey and the Surrounding Area, E. Bozkurt, J.A. Winchester, J.D.A. Piper (eds.). Geological Society of London Special Publication: London, 173, 219–234.http:// 10.1144/GSL.SP.2000.173.01.11
Parlak, O., 2016. The Tauride ophiolites of Anatolia (Turkey): A review: Journal of Earth Science 27, 901-934. https://doi.org/10.1007/s12583-016-0679-3
Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G. and Harvey, J., 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15° 20′ N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology 234,179-210. http://10.1594/PANGAEA.705347
Pearce, J.A., Lippard, S.J., Roberts, S., 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications 16, 77-94.http:// doi.org/10.1144/GSL.SP.1984.016.01.06
Pearce, J.A., Sieger, R., Arculus, R.C., Murton, B.J., Ishii, T., Peate, D.W., Paerkinson, I.J., 1992. Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): a case study of magma genesis during the initial stages of subduction. Proceedings of the Ocean Drilling Program Scientific Results 125, 623-659. http://10.2973/odp.proc.sr.125.172.1992
Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J. Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology 139, 36-53. http://10.1007/s004100050572
Pearce, J.A., 2003. Supra-subduction zone ophiolites: the search for modern analogues. Special Papers-Geological Society of America 269-294. http://10.1130/0-8137-2373-6.269
Pearce, J.A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos 100, 14-48.
https://doi.org/10.1016/j.lithos.2007.06.016.
Peters, D., Bretscher, A., John, T., Scambelluri, M., and Pettke, T., 2017. Fluid-mobile elements in serpentinites: Constraints on serpentinization environments and element cycling in subduction zones: Chemical Geology 466, 654-666, https://doi.org/10.1016/j.chemgeo.2017.07.017.
Pfeifer, H. R., 1979. Fluid-Gestein-Interaktion in metamorphen Ultramafititen der Zentralalpen. Dissertatioen, ETH-Zürich. https://doi.org/10.3929/ethz-a-000185051.
Plank, T., Ludden, J.N., 1992. Geochemistry of sediments in the Argo Abyssal Plain at Site 765: a continental margin reference section for sediment recycling in subduction zones. Proceedings of the Ocean Drilling Program. Scientific Results 123, 167-189.http:// 10.1594/PANGAEA.760882
Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediments and its consequences for the crust and mantle. Chemical Geology 145,325-394.
Plümper, O., Botan, A., Los, C., Liu, Y., Malthe-Sørenssen, A., Jamtveit, B., 2017. Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow. Nature Geoscience 10(9), 685-690. https://doi.org/10.1038/ngeo300.
Prichard, H.M., 1979. A petrographic study of the process of serpentinization in ophiolites and the Ocean crust. Contributions to Mineralogy and Petrology 68, 231-241.
Ray, J., Saha, A., Koeberl, C., Thoni, M., Ganguly, S., Hazra, S., 2013. Geochemistry and petrogenesis of Proterozoic mafic rocks from east Khasi Hills, Shillong Plateau, northeastern India. Precambrian Research 230, 119-137. https://doi.org/10.1016/j.precamres.2013.01.019
Robertson, A., 2004. Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the east-ern Mediterranean and Oman regions: Earth Science Reviews 66,331-387. 10.1016/j.earscirev.2004.01.005. http://10.1016/j.earscirev.2004.01.005
Rüpke, L. H., Morgan, J. P., Hort, M., Connolly, J. A., 2004. Serpentine and the subduction zone water cycle. Earthand Planetary Science Letters, 223(1-2), 17-34.
Saccani, E., Allahyari, Kh., Beccaluva, L., Bianchini, G., 2013. Geochemistry and petrology of the Kermanshah ophiolites (Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research 24,392-411. https://doi.org/10.1016/j.gr.2012.10.009
Saccani, E., Allahyari, Kh., Rahimzadeh, B., 2014. Petrology and geochemistry of mafic magmatic rocks from the Sarve-Abad ophiolites (Kurdistan region, Iran): Evidence for interaction between MORB-type asthenosphere and OIB-type components in the southern Neo-Tethys Ocean, Tectonophysics 621: 132-147. https://doi.org/10.1016/j.tecto.2014.02.011
Saccani, E., 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers 6, 481-501. https://doi.org/10.1016/j.gsf.2014.03.006
Saha, A., Santosh, M., Ganguly, S., Manikyamba, C., Ray, J., 2018. Geochemical cycling during subduction initiation: Evidence from serpentinized mantle wedge peridotite in the south Andaman ophiolite suite. Geoscience Frontiers 9: 1755-1775. https://doi.org/10.1016/j.gsf.2017.12.017
Salters, V.J.M., Stracke, A., 2004. Composition of the depleted mantle. Geochem.Geophys. Geosyst. 5 https://doi.org/10.1029/2003GC000597
Santosh, M., Shaji, E., Tsunogae, T., Mohan, M.R., Satyanarayanan, M., Horie, K., 2013. Suprasubduction zone ophiolite from Agali hill: petrology, zircon SHRIMP U-Pb geochronology, geochemistry and implications for Neoarchean plate tectonics in southern India. Precambrian Research 231, 301-324. http://10.1016/j.precamres.2013.04.003
Santosh, M., Hari, K.R., He, X.F., Han, Y.S., Manu Prasanth, M.P., 2018. Oldest lamproites from Peninsular India track the onset of Paleoproterozoic plume-induced rifting and the birth of Large Igneous Province. Gondwana Research 55, 1-20. http://10.1016/j.gr.2017.11.005
Savov, I.P., Ryan, J.G., D, Antonio, M., Kelley, K. and Mattie, P., 2005. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems 6 (4). http://10.1029/2004GC000777
Shafaii Moghadam, H., R.J. Stern., 2011. Geo-dynamic evolution of late Cretaceous Zagros ophiolites: Formation of Oceanic Lithosphere above a Nascent Subduction Zone. Geological Magazine, 148, 762-801. http://10.1017/S0016756811000410
Shafaii Moghadam, H. and Stern, R. 2015. Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites. Journal of Asian Earth Sciences 100, 31-56. http://10.1016/j.jseaes.2014.12.016
Shafaii Moghadam, H. S., Corfu, F., Stern, R. J. Bakhsh, A. L., 2019. The Eastern Khoy metamorphic complex of NW Iran: A Jurassic ophiolite or continuation of the Sanandaj–Sirjan Zone? Journal Geological Society 176,517-529. http://10.1144/jgs2018-081
Shafaii Moghadam, H., Li, Q.L., Stern, R.J., Griffin, W.L., O’Reilly, S.Y., 2022. Zircon xenocrysts in late cretaceous magmatic rocks in the Kermanshah ophiolite: link to Iran continental crust supports the subduction initiation model. International Geology Review. http://10.1080/00206814.2022.2043193.
Sharma, M., Wasserburg, G.J., 1996. The neodymium isotopic compositions and rare earth patterns in highly depleted ultramafic rocks. Geochimica et Cosmochimica Acta 60, 4537-4550. doi.org/10.1016/S0016-7037(96)00280-3
Shervais, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101-118. http://10.1016/0012-821X(82)90120-0
Shervais, J.W., 2001. Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems 2. https://doi.org/10.1029/2000GC000080
Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T., 2004. Serpentinite subduction: implications for fluid processes andtrace-element recycling. International Geology Review 46(7), 595-613. https://doi.org/10.2747/0020-6814.46.7.595.
Singh, A.K., Singh, R.B. 2013. Genetic implications of Zn- and Mn-rich Cr-spinels in serpentinites of the TiddingSuture Zone, eastern Himalaya, NE India. Geological journal 48: 22-38.
Song, X.Y., Keays, R.R., Zhou, M.F., Qi, L., Ihlenfeld, C., Xiao, J.F., 2009. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochimica et Cosmochimica Acta 73, 404-424. http://10.1016/j.gca.2008.10.029
Stampfli, G.M., Borel, G.D. 2002: A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196/1, 17-33. http://10.1016/S0012-821X(01)00588-X
Stern, R.J., 2004. Subduction initiation: Spontaneous and induced, Earth and Planetary Science Letters 226, 275-292. http://dx.doi.org/10.1016/j.epsl.2004.08.007
Stöcklin, J., 1968. Structural history and tectonics of Iran: a review. American Association Petroleum Geologists 52, 1229-1258.
Sun, S.S., Mc Donough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins, Geological Society of London Special Publication, vol. 42. Blackwell Scientific Publication, UK, pp. 313-345.
Talbot, C.J., Alavi, M., 1996. The past of a future syntaxis across the Zagros.  In: Alsop, G.I., D.J. Blundell, I. Davison (Eds): Salt Tectonics, Geological Society 100, 89-109. https://10.1144/GSL.SP.1996.100.01.08
Umino, S., Kitamura, K., Kanayama, K., Tamura, A., Sakamoto, N., Ishizuka, O., Arai, S., 2015. Thermal and chemical evolution of the subarc mantle revealed by spinel hosted melt inclusions in boninite from the Ogasawara (Bonin) Archipelago, Japan. Geology 43, 151-154. https://10.1130/G36191.1
Van Keken, P.E., Hacker, B.R., Syracuse, E.M., Abers, G.A., 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research: Solid Earth 116 (B1). evidence from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes from Wynad, southern India. Precambrian Research 281, 101-127. https://10.1029/2010JB007922
Viti, C., Mellini, M., 1998. Mesh textures and bastites in the Elba retrograde serpentinites. European Journal of Mineralogy 10, 1341-1359. http://10.1127/ejm/10/6/1341
Whattam, S.A., Stern, R.J., 2011. The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions to Mineralogy and Petrology 162, 1031-1045. https://10.1007/s00410-011-0638-z
White, R.W., Powell, R., Johnson, T.E., 2014. The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese-bearing minerals. Journal of metamorphic geology 32(8), 802-828. http://10.1111/jmg.12095
Whitney, D.L. Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187. https://10.2138/am.2010.3371
Xia, X., Song, S., Niu, Yaoling, 2012. Tholeiite Boninite terrane in the North Qilian suture zone: implications for subduction initiation and back-arc basin development. Chemical Geology 328, 259-277. https://10.1016/j.chemgeo.2011.12.001
Yang, Q.Y., Santosh, M., Ganguly, S., Arun-Gokul, J., Dev, S.D., Tsunogae, T., Shaji, E., Dong, Y., Manikyamba, C., 2016. Melt-fluid infiltration in Archean suprasubduction zone mantle wedge: evidence from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes from Wynad, southern India Precambrian Research 281, 101-127. https://10.1016/j.precamres.2016.05.015
Yazdani, M., Moazzen, M., Oberhänsli., R., 2023. Petrogenesis of mafic rocks from northwest Iran (Piranshahr) and comparison with northeast Iraq ophiolites: Implications for slab window magmatism in an evolving Neotethys arc. Island 32(1). https://10.1111/iar.12481
Yin, Zh., Chen, R,X., Zheng, Y, F., Gong, B., Zha, X, P., Xia, X., 2023. Serpentinization and deserpentinization of the mantle wedge at a convergent plate margin: Evidence of orogenic peridotites from a composite oceanic-continental subduction zone. Journal of Petrology 64, 1-29. https://10.1093/petrology/egad015
Zhang, L., Sun, W.D., Chen, R.X., 2019. Evolution of serpentinite from seafloor hydration to subduction zone metamorphism: Petrology and geochemistry of serpentinite from the ultrahigh pressure north Qaidam orogen in northern Tibet. Lithos 346, 347-105158. https://doi.org/10.1016/j.lithos.2019. 105158.
Zhao, J.J., Zhou, M.F., 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction related metasomatism in the upper mantle. Precambrian Research 152, 27-47. https://10.1016/j.precamres.2006.09.002
Zhihong, W., Huafu, I., 1998. Geology, petrology and geochemistry of the mafic-ultramafic rocks in the Fujian coastal region. Southeastern China, and their genesis. Ofioliti 23(1), 1-6.