Concentration and enrichment of heavy metals in efflorescence secondary sulfate minerals and mine drainage of the Rahatabad kaolin mine, Isfahan province

Authors

Department of Geology, University of Isfahan

Abstract

The abandoned kaolin mine under study is situated near Rahatabad village in the southwest of Naein county, Isfahan province, Iran. Samples were collected from the brine and efflorescent salts of two ponds formed by excavation in the mine, and the pH, Eh, and heavy metals concentration in the samples were determined. Efflorescent salts were identified via XRD analysis after being separated by color. Minerals found in the efflorescent salt samples include tamarugite, rhomboclase, szomolnokite, metasideronatrite, gypsum, ferricopiapite, magnesiocopiapite, bloedite, and konyaite. Cu, Mn, Ni, and Co are concentrated in bloedite and konyaite minerals, Cu, Mn, and Zn in kopiapite group minerals, Cu, Mn, and Co in szomolnokite, Pb and Zn in gypsum, and Zn and Mn in rhomboclase. Enrichment factor calculations indicate that Cu has extremely high enrichment, Co and Ni have high enrichment, while Pb, Mn, Zn, and Cd have low enrichment in the efflorescent salts. Moreover, all heavy metals exhibit very high enrichment in the efflorescent salts compared to the brine. With regards to the Pollution Load Index (PLI) in the efflorescent salts, the yellow and gray efflorescent salts are categorized as contaminated, while the other samples are non-contaminated. The Geoaccumulation Index (Igeo) categorizes the samples as highly to heavily contaminated for Cu, slightly contaminated for Co, not contaminated to slightly contaminated for Ni, and non-contaminated for the other heavy metals.

Keywords

Main Subjects


Alloway, B.J., 2013. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, P. 613.
Amini, B., Amini Chehargh, M.R., Emami, M.H., 2003. Geological map of Kajan, scale 1:100,000, Geological Survey of Iran.
Antivachis, D.N., Chatzitheodoridis, E., Skarpelis, N., Komnitsas, K., 2017. Secondary sulphate minerals in a Cyprus-type ore deposit, Apliki, Cyprus: Mineralogy and its implications regarding the chemistry of pit lake waters. Mine Water and the Environment 36(2), 226-238. https://doi.org/10.1007/s10230-016-0398-0
ASTM Standard D3875-03, 2003. Standard Test Method for Alkalinity in Brackish Water, Seawater, and Brines. ASTM International, West Conshohocken. P. 4.
ASTM Standard D4130-03, 2003. Standard Test Method for Sulfate in Brackish Water, Seawater, and Brines. ASTM International, West Conshohocken. P. 3.
Barbieri, M., 2016. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Journal of Geology & Geophysics 5(237), 1-4. http://doi.org/10.4172/2381-8719.1000237
Basallote, M.D., Cánovas, C.R., Olias, M., Pérez-López, R., Macías, F., Carrero, S., Ayora, C., Nieto, J.M., 2019. Mineralogically-induced metal partitioning during the evaporative precipitation of efflorescent sulfate salts from acid mine drainage. Chemical Geology 530, 119339. http://doi.org/10.1016/j.chemgeo.2019.119339
Berry, L.G., 1947. Composition and optics of copiapite. The Contributions to Canadian Mineralogy, University of Toronto Studies: VI. Geological Series 51, 21-34.
Bigham, J.M., Nordstrom, D.K., 2000. Iron and aluminum hydroxyl sulfates from acid sulfate waters. Reviews in mineralogy and geochemistry 40(1), 351-403. http://doi.org/10.2138/rmg.2000.40.7
Blaxland, A.B., 1971. Occurrence of zinc in granitic biotites. Mineral Deposita 6, 313-220. https://doi.org/10.1007/BF00201889
Bourliva, A., Kantiranis, N., Papadopoulou, L., Aidona, E., Christophoridis, C., Kollias, P., Fytianos, K., 2018. Seasonal and spatial variations of magnetic susceptibility and potentially toxic elements (PTEs) in road dusts of Thessaloniki city, Greece: A one-year monitoring period. Science of the Total Environment 639, 417-427. http://doi.org/10.1016/j.scitotenv.2018.05.170
Brookins, D.G., 2012. Eh-pH diagrams for geochemistry. Springer, P. 176.
Cala-Rivero, V., Arranz-González, J.C., Rodríguez-Gómez, V., Fernández-Naranjo, F.J.,Vadillo-Fernández, L., 2018. A preliminary study of the formation of efflorescent sulfate salts in abandoned mining areas with a view to their harvesting and subsequent recovery of copper. Minerals Engineering 129, 37-40. https://doi.org/10.1016/j.mineng.2018.09.014
Cánovas, C.R., Riera, J., Carrero, S., Olías, M., 2018. Dissolved and particulate metal fluxes in an AMD-affected stream under different hydrological conditions: The Odiel River (SW Spain). Catena 165, 414-424. https://doi.org/10.1016/j.catena.2018.02.020
Carmona, D.M., Cano, Á.F, Arocena, J.M., 2009. Cadmium, copper, lead, and zinc in secondary sulfate minerals in soils of mined areas in Southeast Spain. Geoderma 150(1-2), 150-157. https://doi.org/10.1016/j.geoderma.2009.01.023
Chou, I.M., Seal, R.R, Wang, A., 2013. The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences. Journal of Asian Earth Sciences 62, 734-758. https://doi.org/10.1016/j.jseaes.2012.11.027
Csavina, J., Field, J., Taylor, M.P., Gao, S., Landázuri, A., Betterton, E.A, Sáez, A.E., 2012. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment 433, 58-73. https://doi.org/10.1016/j.scitotenv.2012.06.013
Del Rio-Salas, R., Ayala-Ramírez, Y., Loredo-Portales, R., Romero, F., Molina-Freaner, F., Minjarez-Osorio, C., Pi-Puig, T., Ochoa–Landín, L, Moreno-Rodríguez, V., 2019. Mineralogy and geochemistry of rural road dust and nearby mine tailings: a case of ignored pollution hazard from an abandoned mining site in semi-arid zone. Natural Resources Research 28, 1485-1503. https://doi.org/10.1007/s11053-019-09472-x
Dimitrova, D., Mladenova, V, Hecht, L., 2019. Efflorescent sulfate crystallization on fractured and polished colloform pyrite surfaces: A migration pathway of trace elements. Minerals 10(1), p.12. http://doi.org/10.3390/min10010012
Efimenko, N., Espangenberg, J., Schneider, J., Chiaradia, M., Adatte, T., Matera, V, Follmi, K.B., 2010. High Cd Concentrations in Bajocian carbonates in the Swiss Jura Mountains: Evidences for hydrothermal input. Geochimica et Cosmochimica Acta, Elsevier. 59, 5169-5175. https://doi.org/10.1016/j.gca.2010.04.030
Gier, T.E., Cox, N.L, Young, H.S., 1964. The hydrothermal synthesis of sodium amphiboles. Inorganic Chemistry 3, 1001_1004. https://doi.org/10.1021/ic50017a018
Carter, M.R., Gregorich, E.G., 2007. Soil sampling and methods of analysis. Earth Sciences, Environment and Agriculture, CRC press, P. 1264
Gunsinger, M.R., Ptacek, C.J., Blowes, D.W., Jambor, J.L, Moncur, M.C., 2006. Mechanisms controlling acid neutralization and metal mobility within a Ni-rich tailings impoundment. Applied Geochemistry 21, 1301–1321. https://doi.org/10.1016/j.apgeochem.2006.06.006
Hakanson, L., 1980. An ecological risk index for aquatic pollution control, a sedimentological approach. Water Resources 14; 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8
Hammarstrom, J.M., Seal, R.R., Meier, A.L, Kornfeld, J.M., 2005. Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chemical Geology 215(1-4), 407-431. https://doi.org/10.1016/j.chemgeo.2004.06.053
Humphries, M.S., Kindness, A., Ellery, W.N, Hughes, J.C., 2010. Sediment geochemistry, mineral precipitation and clay neoformation on the Mkuze River floodplain, South Africa. Geoderma 157(1-2), 15-26. https://doi.org/10.1016/j.geoderma.2010.03.010
Isfahan Weather Forecast Organization, 2015. Climatic guide of Naein County. Iran Meteorological Organization.
Jambor, J.L., Nordstrom, D.K, Alpers, C.N., 2000. Metal-sulfate salts from sulfide mineral oxidation. Reviews in Mineralogy and Geochemistry 40(1), 303-350. http://dx.doi.org/10.2138/rmg.2000.40.6
Jamieson, H.E., Robinson, C., Alpers, C.N., McCleskey, R.B., Nordstrom, D.K, Peterson, R.C., 2005. Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California. Chemical Geology 215(1-4), 387-405. https://doi.org/10.1016/j.chemgeo.2004.10.001
Kabata-Pendias A., Mukherjee A.B., 2007. Trace Elements from Soil to Human. Springer-Verlag, Berlin, P. 23.
Khoeurn, K., Sakaguchi, A., Tomiyama, S, Igarashi, T., 2019. Long-term acid generation and heavy metal leaching from the tailings of Shimokawa mine, Hokkaido, Japan: Column study under natural condition. Journal of Geochemical Exploration 201, 1-12. https://doi.org/10.1016/j.gexplo.2019.03.003
Liu, Q., Chen, B., Haderlein, S., Gopalakrishnan, G, Zhou, Y., 2018. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China. Ecotoxicology and Environmental Safety 155, 50-58. https://doi.org/10.1016/j.ecoenv.2018.02.017
Lowson, R.T., Comarmond, M.C.J., Rajaratnam, G, Brown, P.L., 2005. The kinetics of the dissolution of chlorite as a function of pH and at 25 C. Geochimica et Cosmochimica Acta 69, 1687–1699. https://doi.org/10.1016/j.gca.2004.09.028
Lu, L., Wang, R., Chen, F., Xue, J., Zhang, P, Lu, J., 2005. Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites. Environmental geology 49(1), 82-89. https://doi.org/10.1007/s00254-005-0061-8
Macbeth Division of Kollmorgen Intruments Corporation, 1994. Munsell Color Charts, 1994 edition. New Windsor, NY. P. 8.
Mange, M.A., Wright, T.D., 2007. Heavy Minerals in Use. Developments in Sedimentology. Developments in Sedimentology, Volume 58, Elsevier, P. 1328.
McBride, G., 1994. Investigation of contaminated sheep dipping sites in the Waikato. Proceeding of Wasteminz Annual Conference, 129-137.
Mendez, M.O., Maier, R.M., 2008. Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Bio/Technology 7, 47-59. https://doi.org/10.1007/s11157-007-9125-4
Moncur, M.C., Ptacek, C.J., Blowes, D.W, Jambor, J.L., 2005. Release, transport and attenuation of metals from an old tailings impoundment. Applied geochemistry 20(3), 639-659. https://doi.org/10.1016/j.apgeochem.2004.09.019
Moncur, M.C., Ptacek, C.J., Blowes, D.W, Peterson, R.C., 2015. The Occurrence and Implications of Efflorescent Sulfate Minerals at the Former Sherritt–Gordon Zn–Cu Mine, Sherridon, Manitoba, Canada. Canadian Mineralogist 53(5), 961-977. http://doi.org/10.3749/canmin.1500092
Muller, G., 1969. Index of geoaccumulation in sediments of the Rhine River. Geojournal 2, 108-118.
Newman, C.P., Poulson, S.R, McCrea, K.W., 2020. Contaminant generation and transport from mine pit lake to perennial stream system: Multidisciplinary investigations at the Big Ledge Mine, Nevada, USA. Geochemistry 80(4), p.125552. https://doi.org/10.1016/j.chemer.2019.125552
Neyestani, M.R., Bastami, K.D., Esmaeilzadeh, M., Shemirani, F., Khazaali, A., Molamohyeddin, N., Afkham, M., Nourbakhsh, S., Dehghani, M., Aghaei, S, Firouzbakht, M., 2016. Geochemical speciation and ecological risk assessment of selected metals in the surface sediments of the northern Persian Gulf. Marine Pollution Bulletin 109(1), 603-611. https://doi.org/10.1016/j.marpolbul.2016.05.024
Nieva, N.E., Garcia, M.G., Borgnino, L, Borda, L.G., 2021. The role of efflorescent salts associated with sulfide-rich mine wastes in the short-term cycling of arsenic: Insights from XRD, XAS, and µ-XRF studies. Journal of Hazardous Materials 404, p.124158. https://doi.org/10.1016/j.jhazmat.2020.124158
Nordstrom, D.K., Alpers, C.N., 1999. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proceedings of the National Academy of Sciences 96(7), 3455-3462. http://doi.org/10.1073/pnas.96.7.3455
Obiora, S.C., Chukwu, A, Davies, T.C., 2016. Heavy metals and health risk assessment of arable soils and food crops around Pb–Zn mining localities in Enyigba, southeastern Nigeria. Journal of African Earth Sciences 116, 182-189. https://doi.org/10.1016/j.jafrearsci.2015.12.025
Ozverdi, A., Erdem, M., 2006. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. Journal of Hazardous Materials B137, 626–632. https://doi.org/10.1016/j.jhazmat.2006.02.051
Pi-Puig, T., Solé, J, Gómez Cruz, A., 2020. Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico). Minerals 10(10), 871. https://doi.org/10.3390/min10100871
Rashid, I., Daraghmeh, N.H., Al Omari, M.M., Chowdhry, B.Z., Leharne, S.A., Hodali, H.A, Badwan, A.A., 2011. Magnesium silicate. In Profiles of Drug Substances, Excipients and Related Methodology 36, 241-285.  https://doi.org/10.1016/B978-0-12-387667-6.00007-5
Stoilova, D., Wildner, M., 2004. Blödite-type compounds Na2Me(SO4)2×4H2O (Me = Mg, Co, Ni, Zn): crystal structure and hydrogen bonding systems. Journal of Molecular Structure 706, 57-63. https://doi.org/10.1016/j.molstruct.2004.01.070.
Takeno, N., 2005. Atlas of Eh-pH diagrams, Intercomparison of thermodynamic databases, Geological Survey of Japan Open File Report, 419(102), P. 285.
Taylor, S.R., 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta 28(8), 1273-1285. https://doi.org/10.1016/0016-7037(64)90129-2
Valente, T.M., Gomes, C.L., 2009. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Science of the Total Environment 407(3), 1135-1152. https://doi.org/10.1016/j.scitotenv.2008.09.050
Warren, J.K., 2006. Evaporites: sediments, resources and hydrocarbons, Springer, P. 1035.
Wilson, B.M., 2007. Igneous petrogenesis a global tectonic approach, Springer. P. 486.