Application of joint inversion of electrical resistivity data to determine the geometric distribution of municipal sewage leaks (a case study in the Masjedsoleyman town)


Department of Geophysics, Masjed- Soleiman Branch, Islamic Azad University, Masjed- Soleiman, Iran


To determine the probability of sewage infiltration into foundations of unborn structures, the Werner and the dipole - dipole arrays were used in an electrical resistivity tomograph operation in Masjed Soleiman City which is located in south west of Iran. Using Robust Constraint and Combined Marquardt and Occam algorithms, the measured apparent data were inverted to true electrical resistivity values separately then joint inversion was carried out using the data gathered by both arrays. Three drilled boreholes along the electrical resistivity profile were very useful in accurate interpreting the results. The Combined Marquardt and Occam algorithm provided better results than the Robust Constraint for presenting a subsurface electrical resistivity mode. Also, the electrical resistivity model resulting from the joint inversion of the Werner and dipole - dipole array data is more consistent with reality than the individual inversion of the data for each array.
Keywords: Wenner, Dipole-dipole, electrode array, Joint inversion, electrical resistivity.


Main Subjects

Abdullah, F.M., Loke, M.H., Nawawi, M., Abdullah, K., 2019. Improving the resolution of 3-Dresistivitysurveys along the perimeter of a confined area using optimized arrays. Pure and Applied Geophysics 176, 1701–1715. https://10.1007/s00024-018-2061-0 
Adrian, W., Paul, W., James, B., James, W., John, M.K., Andrew, B., Timothy, G., Jonathan, C., 2023. Combined electrical resistivity tomography and ground penetrating radar to map Eurasian badger (Meles Meles) burrows in clay-rich flood embankments (levees). Engineering Geology 323, 107-198.
Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–265
Carpenter, E.W., Habberjam, G.M., 1956.  A tri-potential method of resistivity prospecting. Geophysical Prospecting 29, 128-143. https://doi:10.1190/1.1438247
Chambers, J., Ogilvy, R., Meldrum, P., Nissen, J., 1999. 3D resistivity imaging of buried oil- and tar-contaminated waste deposits. European journal of environmental and engineering geophysics 4, 3–15.
Chambers, J. E., Kuras, O., Meldrum, P.I., Ogilvy, R.D., Hollands, J., 2006. Electrical resistivity tomography applied to geologic, hydrogeological, and engineering investigations at a former waste-disposal site. Geophysics 71(6), 231-239.
Costanzo, A., Pisciotta, A., Pannaccione Apa, M.I., Bongiovanni, S., Capizzi, P., et al., 2021. Integrated use of unmanned aerial vehicle photogrammetry and  terrestrial laser scanning to support archaeological analysis: The Acropolis of Selinunte case (Sicily,  Italy). Archaeological Prospecting  28, 153–165.
Dahlin, T., 1996. 2D resistivity surveying for environmental and engineering applications. First Break 14, 275– 283.https://doi:10.3997/1365-2397.1996014
Dahlin, T., 2001. The development of DC resistivity imaging techniques. Computer and Geosciences 27,1019– 1029.
Dahlin, T., Zhou, B., 2004. A numerical comparison of 2d resistivity imaging with 10 electrode arrays. Geophysical Prospecting 52, 379-398. https://doi:10.1111/j.1365-2478.2004. 00423.x
Daily, W., Owen, E., 1991. Crosshole resistivity tomography. Geophysics 56, 1228–1235. https://doi:10.1190/1.1443142
Gemail, K., Samir, A., Oelsner, C. Mousa, S.E., Ibrahim, S., 2004. Study of saltwater intrusion using 1d, 2d  and 3d resistivity surveys in the coastal depressions at the eastern part of matruh area, Egypt. Near Surface Geophysics 2(2), 103-109. https://doi:10.3997/1873-0604.2004007
Griffiths, D. H., Barker, R.D., 1993. Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics 29, 211-226. https://doi:10.1016/0926-9851(93)90005-J
Griffiths, D.H., Turnbull, J., 1985. A multi-electrode array for resistivity surveying. First Break 3(7), 16 - 20. https://doi:10.3997/1365-2397.1985013
Griffiths, D. H., Turnbull, J., Olayink, A.I., 1990. Two-dimensional resistivity mapping with a computer- controlled array. First Break 8, 121-129. https:// doi:10.3997/1365-2397.1990008
Guinea, A., Bicknell, J., Cox, N., Swan, H., Simmons, N., 2022. Characterization of legacy landfills with electrical resistivity tomography; a comparative study. Journal of Applied Geophysics 203, 104716.https://doi:10.1016/j.jappgeo.2022.104716
Hesse, A., Jolivet, A., Tabbagh, A., 1989. New prospects in shallow depth electrical surveying for archeological and pedological applications. Geophysics 51, 585–594. https:// doi:10.1190/1.1442599
Labrecque, D., Miletto, M., Daily, W., Ramirez, A., Owen, E., 1996. The effects of ‘occam’ inversion of resistivity tomography data.  Geophysics 61, 538–548.  https:// doi:10.1190/1.1443980
Li, Y.G., Ooldenburg, D.W., 1992. Approximate inverse mapping in dc resistivity problems. Geophysical Journal International 109, 343–362. https://doi:10.1111/j.1365-246X.1992.tb00101.x
Loke, M.H., Barker, R.D., 1995. least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60, 1682–1690. https:// doi:10.1190/1.1443900
Loke, M.H., Barker, R.D., 1996. Rapid Least-squares inversion of apparent Resistivity pseudosections by a quasi-newton method. Geophysical prospecting 44, 131–152. https://doi:10.1111/j.1365-2478. 1996.tb00142.x
Loke, M.H., Acworth, I., Dahlin, T., 2003. A comparison of smooth and blocky inversion methods in 2-d electrical imaging surveys. Exploration Geophysics 34, 182–187. https://doi:10.1071/EG03182
Loke, M.H., Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting 44, 131-152. https://doi:10.1111/j.13652478.1996.tb00142.x
Loke, M.H., 2014. Tutorial: 2-D and 3-D electrical imaging surveys.
Martorana, R., Capizzi, P., Pirrera, C., 2023. Unconventional Arrays for 3D Electrical Resistivity and Induced Polarization Tomography to Detect Leachate Concentration in a Waste Landfill. Applied Sciences 13, 7203.
Pazdirek, O., Blaha, V., 1996. Examples of resistivity imaging using ME-100 resistivity field acquisition 
system. EAGE 58th Conference and Technical Exhibition Amsterdam. https:// doi:10.3997/2214-4609.201408817
Park, S.K., Van, G.P.,1991. Inversion of pole-pole data for 3D resistivity structure beneath arrays of electrodes.  Geophysics 56, 951–960. https:// doi:10.1190/1.1443128
Pavel, R., Yulia, D., 2022. Electrical resistivity tomography for characterization of carbon-rich rocks (shungites). Journal of Applied Geophysics, 203, 104667.
Rani, P., Cassiani, G., 2022. Tracking contaminant transport using time-lapse geophysics: A review on applications of electrical methods. Water Secured.  17, 100127. https:// OI:10.1016/j.wasec.2022.100127
Sasaki, Y., 1994. 3D resistivity inversion using the finite-element method. Geophysics 59, 1839–1848. https:// doi:10.1190/1.1443571
Seaton, W. J., Burbey, T.J., 2002. Evaluation of two-dimensional resistivity methods in a fractured crystalline- rock terrane. Journal of Applied Geophysics 51, 21–41. https:// doi:10.1016/S0926-9851(02)00212-4
Shima, H., 1992. 2D and 3D resistivity imaging reconstruction using cross hole data. Geophysics 55, 682– 694.
Thomas, G., 2004. Inversion Methods and Resolution Analysis for the 2D/3D Reconstruction of Resistivity Structures from DC Measurements, Ph.D thesis, University of Freiberg.  
Zhou, B., Dahlin, T., 2003. Properties and effects of measurement errors on 2d resistivity Imaging. Near Surface Geophysics 1, 105– 117. https:// doi:10.3997/1873-0604.2003001