کابرد روش برگردان ترکیبی داده های مقاومت الکتریکی به منظور تعیین گسترش هندسی نشت فاضلاب های شهری ( مطالعه موردی شهرستان مسجد سلیمان)

نوع مقاله : مقاله پژوهشی

نویسنده

گروه ژئوفیزیک، واحد مسجدسلیمان، دانشگاه آزاد اسلامی، مسجدسلیمان، ایران

چکیده

جهت تشخیص احتمال نفوذ فاضلاب های شهری به پی ساختمانها ، دو آرایه الکترودی ونر و دوقطبی – دوقطبی در عملیات توموگرافی مقاومت ویژه الکتریکی در شهر مسجد سلیمان، مورد استفاده قرار گرفت. با استفاده از دو الگوریتم Robust Constraint و Combined Marquardt and Occam داده های اندازه گیری شده ظاهری بصورت مجزا و همچنین ترکیبی به مقادیر مقاومت الکتریکی حقیقی برگردانده شدند. جهت تفسیر دقیق نتایج، سه گمانه در امتداد پروفیل مقاومت الکتریکی ویژه حفر گردید. الگوریتم Combined Marquardt and Occam نسبت به Robust Constraint برای ارائه مدل مقاومت الکتریکی ویژه زیر سطحی نتایج مناسب تری را ارائه داد. همچنین مدل مقاومت الکتریکی ویژه ناشی از برگردان ترکیبی داده های دو آرایه ونر و دوقطبی – دوقطبی نسبت به برگردان مجزای داده های مربوط به هر آرایه سازگاری بیشتری با واقعیت دارد. نتایج این پژوهش کارایی برگردان ترکیبی در شناسایی گسترش هندسی نشت فاضلاب ها در شهر مسجد سلیمان را تایید می نماید.

کلیدواژه‌ها

موضوعات


Abdullah, F.M., Loke, M.H., Nawawi, M., Abdullah, K., 2019. Improving the resolution of 3-Dresistivitysurveys along the perimeter of a confined area using optimized arrays. Pure and Applied Geophysics 176, 1701–1715. https://10.1007/s00024-018-2061-0 
Adrian, W., Paul, W., James, B., James, W., John, M.K., Andrew, B., Timothy, G., Jonathan, C., 2023. Combined electrical resistivity tomography and ground penetrating radar to map Eurasian badger (Meles Meles) burrows in clay-rich flood embankments (levees). Engineering Geology 323, 107-198. https://doi.org/10.1016/j.enggeo.2023.107198.
Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–265 https://cdnsciencepub.com/doi/10.1139/e81-019
Carpenter, E.W., Habberjam, G.M., 1956.  A tri-potential method of resistivity prospecting. Geophysical Prospecting 29, 128-143. https://doi:10.1190/1.1438247
Chambers, J., Ogilvy, R., Meldrum, P., Nissen, J., 1999. 3D resistivity imaging of buried oil- and tar-contaminated waste deposits. European journal of environmental and engineering geophysics 4, 3–15. https://nora.nerc.ac.uk/id/eprint/14187
Chambers, J. E., Kuras, O., Meldrum, P.I., Ogilvy, R.D., Hollands, J., 2006. Electrical resistivity tomography applied to geologic, hydrogeological, and engineering investigations at a former waste-disposal site. Geophysics 71(6), 231-239.  https://doi.org/10.1190/1.2360184
Costanzo, A., Pisciotta, A., Pannaccione Apa, M.I., Bongiovanni, S., Capizzi, P., et al., 2021. Integrated use of unmanned aerial vehicle photogrammetry and  terrestrial laser scanning to support archaeological analysis: The Acropolis of Selinunte case (Sicily,  Italy). Archaeological Prospecting  28, 153–165.  https://doi.org/10.1002/arp.1804
Dahlin, T., 1996. 2D resistivity surveying for environmental and engineering applications. First Break 14, 275– 283.https://doi:10.3997/1365-2397.1996014
Dahlin, T., 2001. The development of DC resistivity imaging techniques. Computer and Geosciences 27,1019– 1029.  http://dx.doi.org/10.1016/S0098-3004(00)00160-6
Dahlin, T., Zhou, B., 2004. A numerical comparison of 2d resistivity imaging with 10 electrode arrays. Geophysical Prospecting 52, 379-398. https://doi:10.1111/j.1365-2478.2004. 00423.x
Daily, W., Owen, E., 1991. Crosshole resistivity tomography. Geophysics 56, 1228–1235. https://doi:10.1190/1.1443142
Gemail, K., Samir, A., Oelsner, C. Mousa, S.E., Ibrahim, S., 2004. Study of saltwater intrusion using 1d, 2d  and 3d resistivity surveys in the coastal depressions at the eastern part of matruh area, Egypt. Near Surface Geophysics 2(2), 103-109. https://doi:10.3997/1873-0604.2004007
Griffiths, D. H., Barker, R.D., 1993. Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics 29, 211-226. https://doi:10.1016/0926-9851(93)90005-J
Griffiths, D.H., Turnbull, J., 1985. A multi-electrode array for resistivity surveying. First Break 3(7), 16 - 20. https://doi:10.3997/1365-2397.1985013
Griffiths, D. H., Turnbull, J., Olayink, A.I., 1990. Two-dimensional resistivity mapping with a computer- controlled array. First Break 8, 121-129. https:// doi:10.3997/1365-2397.1990008
Guinea, A., Bicknell, J., Cox, N., Swan, H., Simmons, N., 2022. Characterization of legacy landfills with electrical resistivity tomography; a comparative study. Journal of Applied Geophysics 203, 104716.https://doi:10.1016/j.jappgeo.2022.104716
Hesse, A., Jolivet, A., Tabbagh, A., 1989. New prospects in shallow depth electrical surveying for archeological and pedological applications. Geophysics 51, 585–594. https:// doi:10.1190/1.1442599
Labrecque, D., Miletto, M., Daily, W., Ramirez, A., Owen, E., 1996. The effects of ‘occam’ inversion of resistivity tomography data.  Geophysics 61, 538–548.  https:// doi:10.1190/1.1443980
Li, Y.G., Ooldenburg, D.W., 1992. Approximate inverse mapping in dc resistivity problems. Geophysical Journal International 109, 343–362. https://doi:10.1111/j.1365-246X.1992.tb00101.x
Loke, M.H., Barker, R.D., 1995. least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60, 1682–1690. https:// doi:10.1190/1.1443900
Loke, M.H., Barker, R.D., 1996. Rapid Least-squares inversion of apparent Resistivity pseudosections by a quasi-newton method. Geophysical prospecting 44, 131–152. https://doi:10.1111/j.1365-2478. 1996.tb00142.x
Loke, M.H., Acworth, I., Dahlin, T., 2003. A comparison of smooth and blocky inversion methods in 2-d electrical imaging surveys. Exploration Geophysics 34, 182–187. https://doi:10.1071/EG03182
Loke, M.H., Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting 44, 131-152. https://doi:10.1111/j.13652478.1996.tb00142.x
Loke, M.H., 2014. Tutorial: 2-D and 3-D electrical imaging surveys.  www.geoelectrical.com
Martorana, R., Capizzi, P., Pirrera, C., 2023. Unconventional Arrays for 3D Electrical Resistivity and Induced Polarization Tomography to Detect Leachate Concentration in a Waste Landfill. Applied Sciences 13, 7203.  https://doi.org/10.3390/app13127203
Pazdirek, O., Blaha, V., 1996. Examples of resistivity imaging using ME-100 resistivity field acquisition 
system. EAGE 58th Conference and Technical Exhibition Amsterdam. https:// doi:10.3997/2214-4609.201408817
Park, S.K., Van, G.P.,1991. Inversion of pole-pole data for 3D resistivity structure beneath arrays of electrodes.  Geophysics 56, 951–960. https:// doi:10.1190/1.1443128
Pavel, R., Yulia, D., 2022. Electrical resistivity tomography for characterization of carbon-rich rocks (shungites). Journal of Applied Geophysics, 203, 104667. https://doi.org/10.1016/j.jappgeo.2022.104667.
Rani, P., Cassiani, G., 2022. Tracking contaminant transport using time-lapse geophysics: A review on applications of electrical methods. Water Secured.  17, 100127. https:// OI:10.1016/j.wasec.2022.100127
Sasaki, Y., 1994. 3D resistivity inversion using the finite-element method. Geophysics 59, 1839–1848. https:// doi:10.1190/1.1443571
Seaton, W. J., Burbey, T.J., 2002. Evaluation of two-dimensional resistivity methods in a fractured crystalline- rock terrane. Journal of Applied Geophysics 51, 21–41. https:// doi:10.1016/S0926-9851(02)00212-4
Shima, H., 1992. 2D and 3D resistivity imaging reconstruction using cross hole data. Geophysics 55, 682– 694. https://doi.org/10.1190/1.1443195
Thomas, G., 2004. Inversion Methods and Resolution Analysis for the 2D/3D Reconstruction of Resistivity Structures from DC Measurements, Ph.D thesis, University of Freiberg.  
Zhou, B., Dahlin, T., 2003. Properties and effects of measurement errors on 2d resistivity Imaging. Near Surface Geophysics 1, 105– 117. https:// doi:10.3997/1873-0604.2003001