Morphological diversity of microbialites and the significance of sponge remains in the Permian Triassic transition interval from Hambast Range, Central Iran

Authors

1 Department of Earth Sciences, School of Science, Shiraz University, Iran

2 Department of Earth Sciences, School of Science, Shiraz University. Iran

3 Department of Earth Sciences, Shiraz University

Abstract

The end-Permian mass extinction which is known as the largest bio-event in the Phanerozoic had a significant influence on the sedimentary regime. Latest Permian skeletal carbonates in the equatorial shallow seas, immediately after the extinction horizon, are replaced by non-skeletal microbialites. In this study, morphological diversity, associating organisms, and environmental conditions of these microbialites at the Hambast Range (Central Iran) are documented and discussed in this study. No erosional surface is observed in the topmost Permian bed and except for one tabular clotted microbial bed, all the other microbialites are characterized by domical form and digitated/columnar inner structures. The presence of laminations within the columns indicates the presence of mounds of columnar stromatolites and the clotted fabrics are interpreted as a Thrombolite fabric. Microscopic investigation of the micritic materials between the microbial columns/clots confirms the presence of sponge remains (fibers and spicules). Low (morphological) diversity and the dominance of digitated/columnar microbialites in the studied area indicate a more stable depositional condition in a deeper marine setting, compared to highly diverse and thrombolite-dominated microbialites (e.g., S. China microbialites). The development of domical columnar microbialites in such a setting is perhaps due to the competition for light. The association of sponges with the presence of a complex reef ecosystem immediately after the extinction horizon. The restriction of these reefs to the area with microbial buildups signifies the role of microbial activities (e.g., providing oxygen) in the development of reef ecosystems in a global unfavorable condition after the end-Permian extinction.

Keywords

Main Subjects


Angiolini, L., Crippa, G., Shen, S.Z., Zhang, H., Zhang, Y.C., Ghorbani, M., Ghorbani, M., Ovissi, M., 2017. Report of the Chinese, Italian, Iranian working group: The Permian- Triassic boundary sections of Abadeh revisited. Permophiles 65, 24–27.
Awramik, S.M., 1990. Stromatolites. In: Briggs, D.E.G., Crowther, P.R. (Eds.), Palaeobiology: A Synthesis. Blackwell Scientific Publications, London. pp. 336–341.
Bagherpour, B., Bucher, H., Baud, A., Brosse, M., Vennemann, T., Martini, R., Guodun, K., 2017. Onset, development, and cessation of basal Early Triassic microbialites (BETM) in the Nanpanjiang pull-apart Basin, South China Block. Gondwana Research 44, 178–204. https:// doi.org/10.1016/j.gr.2016.11.013
Bagherpour, B., Bucher, H., Vennemann, T., Schneebeli–Hermann, E., Yuan, D.X., Leu, M., Zhang, C., Shen, S.Z., 2020. Are Late Permian carbon isotope excursions of local or of global significance? Geological Society of America Bulletin 132(3–4), 521–544. https://doi.org/10.1130/B31996.1
Baud, A., Cirilli, S., Marcoux, J., 1997. Biotic response to mass extinction: the lowermost Triassic microbialites. Facies 36, 238–242. https://doi.org/10.1007/bf02536885
Baud, A., Richoz, S., Cirilli, S., Marcoux, J., 2002. Basal Triassic carbonate of the Tethys: a microbialite world, in Proceedings of the 16th International Sedimentological Congress, Johannesburg, RAU University, Abstract Vol. 24-25, (Johannesburg: RAU University).
Baud, A., Richoz, S., Marcoux, J., 2005. Calcimicrobial cap rocks from the basal Triassic units: western Taurus occurrences (SW Turkey). Comptes Rendus Palevol 4, 569–582. https://doi.org/10.1016/j.crpv.2005.03.001
Baud, A., Richoz, S., Pruss, S., 2007. The lower triassic anachronistic carbonate facies in space and time. Global Planetary Change 55, 81–89. https://doi.org/10.1016/j.gloplacha.2006.06.008
Baud, A., Richoz, S., Brandner, R., Krystyn, L., Heindel, K., Mohtat, T., Mohtat-Aghai, P., Horacek, M., 2021. Sponge Takeover from End-Permian Mass Extinction to Early Induan Time: Records in Central Iran Microbial Buildups. Frontiers in Earth Science 9:586210. https://doi.org/10.3389/feart.2021.586210
Brayard, A., Vennin, E., Olivier, N., Bylund, K.G., Jenks, J., Stephen, D.A., Bucher, H., Hofmann, R., Goudemand, N., Escarguel, G., 2011. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geoscience 4, 693–697. https://doi.org/10.1038/ngeo1264
Burgess, S.D., Bowring, S., Shen, S.Z., 2014. High-precision timeline for Earth'smost severe extinction.
Proceedings of the National Academy of Sciences  111, 3316–3321. https:// doi.org/10.1073/pnas.1317692111
Burne, R.V., Moore, L.S., 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2, 241–254. https://doi.org/10.2307/3514674
Chen, J., Shen, S.Z., Zhang, Y.C., Angiolini, L., Gorgij, M.N., Crippa, G., Wang, W., Zhang, H., Yuan, D., Li, X., Xu, Y., 2020. Abrupt warming in the latest Permian detected using high- resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran. Palaeogeography, Palaeoclimatology, Palaeoecology 560, 109973. https://doi.org/10.1016/j.palaeo.2020.109973
Ezaki, Y., Liu, J., Nagano, T., Adachi, N., 2008. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform: initiation and cessation of a microbial regime. Palaios 23, 356–369. https://doi.org/10.2110/palo.2007.p07-035r
Forel, M.B., Crasquin, S., Kershaw, S., Collin, P.Y., 2013. In the aftermath of the end-Permian extinction: the microbialite refuge? Terra Nova 25, 137–143. https://doi.org/10.1111/ter.12017
Foster, W.J., Heindel, K., Richoz, S., Gliwa, J., Lehrmann, D.J., Baud, A., Kolar-Jurkovšek, T., Aljinović, D., Jurkovšek, B., Korn, D., Martindale, R.C., Peckmann, J., 2019. Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites. Depositional Record 2020, 62–74. https://doi.org/10.1002/dep2.97
Friesenbichler, E., Richoz, S., Baud, A., Krystyn, L., Sahakyan Sahakyan, L., Vardanyan, S., Peckmann, J., Reitner, J., Heindel, K., 2018. Sponge-microbial buildups from the lowermost Triassic Chanakhchi section in southern Armenia: microfacies and stable carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 490, 653–672. https://doi.org/10.1016/j.palaeo.2017.11.056
Gallet, Y., Krystyn, L., Besse, J., Saidi, A., Ricou, L.E., 2000. New constraints on the Upper Permian and Lower Triassic geomagnetic polarity timescale from the Abadeh section (central Iran).  Journal of Geophysical Research: Solid Earth 105, 2805–2815. https://doi.org/10.1029/1999jb900218
Ghaderi, A., Leda, L., Schobben, M., Korn, D., Ashouri, A.R., 2014. High-resolution stratigraphy of the Changhsingian (Late Permian) successions of NW Iran and the Transcaucasus based on lithological features, conodonts and ammonoids. Fossil Record 17, 41–57. https://doi.org/10.5194/fr-17-41-2014
Hassanzadeh, J., Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics 35, 586–621. https://doi.org/10.1002/2015TC003926
Heindel, K., Richoz, S., Birgel, D., Brandner, R., Klügel, A., Krystyn, L., Baud, A., Horacek, M., Mohtat, T., Peckmann, J., 2015. Biogeochemical formation of calyx-shaped carbonate crystal fans in the shallow subsurface of the Early Triassic seafloor. Gondwana Research 27, 840–861. https://doi.org/10.1016/j.gr.2013.11.004
Heindel, K., Foster, W.J., Richoz, S., Birgel, V.J., Roden, D., Baud, A., Brandner, R., Krystyn, L., Mohtat, T., Koşun, E., Twitchett, R.J., Reitner, J., Peckmann, J., 2018. The formation of microbial-metazoan bioherms and biostromes following the latest Permian mass extinction. Gondwana Research 61, 187–202. https://doi.org/10.1016/j.gr.2018.05.007
Heydari, E., Hassandzadeh, J., Wade, W.J., 2000. Geochemistry of central Tethyan upper permian and lower triassic strata, abadeh region, Iran. Sedimentary Geology 137, 85–99. https://doi.org/10.1016/S0037-0738(00)00138-X
Heydari, E., Arzani, N., Safaei, M., Hassanzadeh, J., 2013. Ocean's response to a changing climate: clues from variations in carbonate mineralogy across the Permian–Triassic boundary of the Shareza Section, Iran. Global Planetary Change. 105, 79–90. https://doi.org/10.1016/j.gloplacha.2012.12.013
Horacek, M., Brandner, R., Abart, R., 2007. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 347–354. https://doi.org/10.1016/j.palaeo.2006.11.049
Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M., Moallemi, A., Lotfpour, M., Monibi, S., 2006. Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture. GeoArabia 11(2), 75–176. https://doi.org/10.2113/geoarabia110275
Jiang, H., Lai, X., Sun, Y., Wignall, P.B., Liu, J., Yan, C., 2014. Permian–Triassic conodonts from Dajiang (Guizhou, South China) and their implication for the age of microbialite deposition in the aftermath of the End-Permian mass extinction. Journal of Earth Science 25(3), 413–430. https://doi.org/10.1007/s12583-014-0444-4
Kershaw, S., Zhang, T. Lan, G., 1999. A? microbialite carbonate crust at the Permian–Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 146(1-4), 1-18. https://doi.org/10.1016/S0031-0182(98)00139-4
Kershaw, S., Li, Y., Crasquin, S.S., Feng, Q., Mu, X., Collin, P.Y., Reynolds, A., Guo, L., 2007. Earliest Triassic microbialites in the South China block and other areas: controls on their growth and distribution. Facies 53, 409–425. https://doi.org/10.1007/s10347-007-0105-5
Kershaw, S., Crasquin, S., Li, Y., Collin, P.Y., Forel, M.B., Mu, X., Baud, A., Wang, Y., Xie, S., Mauer, F., Guo, L., 2012. Microbialites and global environmental change across the Permian–Triassic boundary: a synthesis. Geobiology 10, 25–47. https://doi.org/10.1111/j.1472-4669.2011.00302.x
Korte, C., Kozur, H.W., Joachimski, M.M., Strauss, H., Veizer, J., Schwark, L., 2004. Carbone, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. International Journal of Earth Sciences 9, 565–581. https://doi.org/10.1007/s00531-004-0406-7
Kozur, H.W., 2004. Pelagic uppermost Permian and the Permian-Triassic boundary conodonts of Iran. Part I: Taxonomy. Hallesches Jahrbuch für Geowissenschaften 18, 39–68.
Kozur, H.W., 2005. Pelagic uppermost Permian and the Permian–Triassic boundary conodonts of Iran. Part II: investigated sections and evaluation of the conodont faunas. Hallesches Jahrbuch für Geowissenschaften 19, 49–86.
Kozur, H.W., 2007. Biostratigraphy and event stratigraphy in Iran around the Permian Triassic Boundary (PTB): implications for the causes of the PTB biotic crisis. Global Planetary Change 55(1–3), 155–176. https://doi.org/10.1016/j.gloplacha.2006.06.011
Leda, L., Korn, D., Ghaderi, A., Hairapetian, V., Struck, U., Reimold, W.U., 2014. Lithostratigraphy and carbonate microfacies across the Permian–Triassic boundary near Julfa (NW Iran) and in the Baghuk Mountains (Central Iran). Facies 60 (1), 295–325. https://doi.org/10.1007/s10347-013-0366-0
Lehrmann, D.J., 1999. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China. Geology 27, 359–362. https://doi.org/10.1130/0091-7613(1999)027%3C0359:ETCMAB%3E2.3.CO;2
Lehrmann, D.J., Bentz, J.M., Wood, T., Goers, A., Dhillon, R., Akin, S., Li, X., Payne, J.L., Kelley, B.M., Meyer, K.M., Schaal, E.K., Suarez, M.B., Yu, M., Qin, Y., Li, R., Minzoni, M., Henderson, C.M., 2015. Environmental controls on the genesis of marine microbialites and dissolution surface associated with the end-Permian mass extinction: new sections and observations from the Nanpanjiang basin, South China. Palaios 30, 529–552. https://doi.org/10.2110/palo.2014.088
Lehrmann, D.J., Payne, J.L., Felix, S.V., Dillett, P.M., Wang, H., Yu, Y.Y., Wei, J.Y., 2003. Permian–Triassic boundary sections from shallow marine carbonate platforms of the Nanpanjiang Basin, South China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios 18, 138–152. https://doi.org/10.1669/0883-1351(2003)18%3C138:PBSFSC%3E2.0.CO;2
Liu, X.C., Wang, W., Shen, S.Z., Gorgij, M.N., Ye, F.C., Zhang, Y.C., Furuyama, S., Kano, A. Chen, X.Z., 2013. Late Guadalupian to Lopingian (Permian) carbon and strontium isotopic chemostratigraphy in the Abadeh section, central Iran. Gondwana Research 24(1), 222-232. https://doi.org/10.1016/j.gr.2012.10.012
Muttoni, G., Kent, D.V., 2019. Adria as promontory of Africa and its conceptual role in the Tethys Twist and Pangea B to Pangea A Transformation in the Permian. Rivista, Italiana di Paleontologiia e Stratigrafia 25, 249–269. https://doi.org/10.13130/2039-4942/11437
Payne, J.L., Lehrmann, D.J., Follett, D., Seibel, M., Kump, L.R., Riccardi, A., Altiner, D., Sano, H., Wei, J., 2007. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian–Triassic boundary events. Geological Society of America Bulletin 119, 771–784. https://doi.org/10.1130/B26091.1
Pruss, S.B., Bottjer, D.J., Corsetti, F.A., Baud, A., 2006. A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States.  Earth-Science Reviews 78, 193–206. https://doi.org/10.1016/j.earscirev.2006.05.002
Raup, D.M., 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206, 217–218. https://doi.org/10.1126/science.206.4415.217
Richoz, S., Krystyn, L., Baud, A., Brandner, R., Horacek, M., Mohtat-Aghai, P., 2010. Permian Triassic boundary interval in the Middle East (Iran and N. Oman): progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution. Journal of Asian Earth Sciences 39, 236–253. https://doi.org/10.1016/j.jseaes.2009.12.014
Schubert, J.K., Bottjer, D.J., 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20, 883–886. https://doi.org/10.1130/0091-7613(1992)020<0883:ETSAPM>2.3.CO;2
Sepkoski, J.J.Jr., 1984. A kinetic-model of Phanerozoic taxonomic diversity 3. Post-Paleozoic families and mass extinctions. Paleobiology 10, 246–267. https://doi.org/10.1017/S0094837300008186
Sepkoski J.J.Jr., Bambach, R.K., Droser, M.L., 1991. Secular changes in Phanerozoic event bedding and the biological overprint. In: Einsele, G., Ricken, W., Seilacher, A. (Eds.), Cycles and Events in Stratigraphy. Springer, Berlin, 298–312.
Shapiro, R.S., 2000. A comment on the systematic confusion of thrombolites. Palaios 15, 166–169. https://doi.org/10.2307/3515503
Shen, S.Z., Gorgij, M.N., Wang, W., Zhang, Y.C., Khamar, H.R., Tanatabaei, S.H., 2009. Report of field trip of the Permian stratigraphy in Central and Eastern Iran. Permophiles 53, 2–5.
Shen, S.Z., Cao, C.Q., Zhang, H., Bowring, S.A., Henderson, C.M., Payne, J.L., Davydov, V.I., Chen, B., Yuan, D.X., Zhang, Y.C. Wang, W., 2013. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran. Earth and Planetary Science Letters 375, 156-165. https://doi.org/10.1016/j.epsl.2013.05.020
Song, H.J., Tong, J.N., Chen, Z.Q., Yang, H., Wang, Y.B., 2009. End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, South China. Journal of Paleontology 83, 718–738. https://doi.org/10.1666/08-175.1
Stampfli, G.M., Borel, G.D., 2002. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 196, 17-33. https://doi.org/10.1016/S0012-821X(01)00588-X
Taraz, H., Golshani, F., Nakazawa, K., Shimizu, D., Bando, Y., Ishii, K.I., Murata, M., Okimura, Y., Sakagami, S., Nakamura, K., Tukuoka, T., 1981. The Permian and the Lower Triassic systems in Abadeh region, central Iran. Memoir of the Faculty of Education, Kyoto University, Series of Geology and Mineralogy 47, 62–133. https://doi.org /hdl.handle.net/2433/186643
Wang, W., Kano, A., Okumura, T., Ma, Y., Matsumoto, R., Matsuda, N., Ueno, K., Chen, X., Kakuwa, Y., Gharaie, M.H.M. Ilkhchi, M.R., 2007. Isotopic chemostratigraphy of the microbialite-bearing Permian–Triassic boundary section in the Zagros Mountains, Iran. Chemical Geology 244(3-4), 708-714. https://doi.org/10.1016/j.chemgeo.2007.07.018
Wang, W.Q., Garbelli, C., Zhang, F.F., Zheng, Q.F., Zhang, Y.C., Yuan, D.X., Shi, Y.K., Chen, B. Shen, S.Z., 2020. A high-resolution Middle to Late Permian paleotemperature curve reconstructed using oxygen isotopes of well-preserved brachiopod shells. Earth and Planetary Science Letters 540, 116245. https://doi.org/10.1016/j.epsl.2020.116245
Wei, W., Matsumoto, R., Kakuwa, Y., Mahmudy Gharaie, M.H., Yue, L. Kano, A., 2005. Isotopic chemostratigraphy of the Permian-Triassic boundary in Zagros Mountains, Aligoudarz, Iran. Permophiles 45, 31-36.
Wignall, P.B., Kershaw, S., Collin, P.Y., Crasquin, S.S., 2009. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events: comment. Geological Society of America Bulletin 121(5–6), 954–956. https://doi.org/10.1130/B26424.1
Yang, H., Chen, Z.Q., Wang, Y., Tong, J., Song, H., Chen, J., 2011. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 111–128. https://doi.org/10.1016/j.palaeo.2010.05.029
Yang, H., Chen, Z. Q., Kershaw, S., Liao, W., Lü, E., Huang, Y., 2019. Small microbialites from the basal Triassic mudstone (Tieshikou, Jiangxi, South China): geobiologic features, biogenicity, and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 519, 221–235. https://doi.org/10.1016/j.palaeo.2018.06.030
Yin, H.F., Jiang, H.S., Xia, W.C., Feng, Q.L., Zhang, N., Shen, J., 2014. The end-Permian regression in South China and its implication on mass extinction. Earth-Science Reviews 173, 19–33. https://doi.org/10.1016/j.earscirev.2013.06.003