Petrology and geochemistry of south Mahin volcanic rocks in Tarom-Hashtjin magmatic zone

Authors

1 Department of Geology, Tabas Branch, Islamic Azad University, Tabas, Iran

2 - Department of Geology, Tabas Branch, Islamic Azad University, Tabas, Iran

3 Tarom Copper Industries Company (PJS)

Abstract

Mahin village is located in Alborz-Azerbaijan area in Tarom-Hashtjin magmatic- metallogenetic sub-area. According to petrographic studies done around the south of Mahin, the outcrop rocks include trachyte andesite, andesite, basaltic andesite, pyroxene andesite, pyroclastic, and porphyritic gabbro, affected by the alteration process. In geochemical studies, the samples are located in the basalt, alkaline basalt, andesite, and basaltic andesite domains. All rock samples are in the magmatic series of calc-alkaline to high-potassium calc-alkaline (shoshonite). The primary magma is alkaline in nature. Amphibole and mainly phlogopite have been present in the original melt. Accordingly, the primary magma was probably formed at a depth of about 70 km. The composition of high-potassium calc-alkaline, the decrease of FHSE elements, especially Zr, the high ratios of Nb / U, Th / U, Ba / Nb, Nb / Th, and the low ratio of Ce / Pb and the diagrams all confirm the existence of active continental. Arc island evidence in some diagrams, and the association and simultaneity of igneous rocks with green tufftite and sedimentary rocks in and around the area, all confirm the existence of continental(ensialic) back-arc basin. According to these indications, there might have been active normal continental arcs and ensialic back arc simultaneously in the area.

Keywords

Main Subjects


Anderson, D.L., Toshiro, T., Yu-shen, Z., 1992. plate tectonics and hotspots: The third dimension. Science 256(5064), 1645 – 1651 https:// doi:10.1126/science.256.5064.1645 Andersson, U.B., Eklund, O., Frojdo, S., Konopelko D., 2006. 1.8 Ga magmatism in the Fennoscandian Shield; lateral variations in subcontinental mantle enrichment. Lithos 86(1-2), 110–136 https://doi.org/10.1016/j.lithos.2005.04.001 Atherton, M.P., Ghani, A.A., 2002. Slab breakoA: A model for Caledonian, Late Granite syn- ollisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos 62(3–4), 65–85 https://doi.org/10.1016/S0024-4937(02)00111-1 Blundy, J.D., Holland, T.J.B., 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology 104(2), 208–224. https://doi. org/10.1007/BF00306444 Brown, G.C., Thorpe, R.S., Webb, P.C., 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of the Geological Society, 141(3), 413–426. https://doi.org/10.1144/gsjgs.141.3.0413 Cabanis, B., Lecolle, M., 1989. Le diagramme La/10 – Y/15 – Nb/8: Un outil pour la discrimination des series volcaniques et en evidence des mélange et/ot de vontamination crustale. Comptes Rendus de l'Académie des Sciences 309, 2023-2029. Clague, D.A., Frey, F.A.,1982. Petrology and trace element geochemistry of the Honolulu Volcanics, Oahu: Implications for the oceanic mantle below Hawaii, I. Petrology 23(3), 447-504. https://doi.org/10.1093/petrology/23.3.447 Class, C., Goldstein, S.L., 1997. Plume–lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth and Planetary Science Letters 150(3-4), 245 –260. https://doi.org/10.1016/S0012-821X(97)00089-7 Condie, K.C., 1986. Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the Southwestern United States. Journal of Geology 94(6), 825–864 https://doi.org/10.1086/629091 Dunphy, J.M., Ludden, J.N., 1998. Petrological and geochemical characteristics of a Paleoproterozoic magmatic arc (Narsajuaq terrane, Ungava, Canada) and compositions to Superior Province granitoids. Precambrian Research 91(1-2), 109-152. https://doi.org/10.1016/S0301-9268(98)00041-2 Farahat, E.S., El Mahalawi, M.M., Hoinkes, G., Abdel Aal, A.Y., 2004. Continental back- arc basin origin of some ophiolites from the Eastern Desert of Egypt. Mineralogy and Petrology 82(1-2), 81–104. https://doi.org/ 10.1007/s00710-004-0052-6 Furman, T., Graham, D.,1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kilvu volcanic procince. Lithos 48(c), 237-262. https://doi.org/10.1016/S0419-0254(99)80014-7 Gill, J.B.,1981. Orogenic andesites and plate tectonics Springer-Verlag., New York. P. 390. Hastie, A.R., Kerr, A.C., Pearce, J.A., Mitchell, S.F., 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology 48(12), 2341–2357. https://doi.org/10.1093/petrology/egm062 Hirayama, K., Samimi, M., Zahedi, M., Hushmand-Zadeh, A., 1966. Geology of the Tarom District, Western Part (Zanjan area north-west Iran), Geological Survey of Iran, Tehran, Report. 8. 31. Hofmann, A.W., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust, Earth and Planetary Science Letters 90(3), 297–314. https://doi.org/10.1016/0012-821X(88)90132-X Hofmann, A.W., Jochum, K., Seufert, M., White, W.M.,1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution, Earth and Planetary Science Letters 79(1–2), 33–45. https://doi.org/10.1016/0012-821X(86)90038-5 Jamali, H., 2017. The behavior of rare-earth elements, zirconium and hafnium during magma evolution and their application in determining mineralized magmatic suites in subduction zones: constraints from the Cenozoic belts of Iran. Ore Geology Reviews 81(1), 270-279. https://doi.org/ 10.1016/j.oregeorev.2016.10.006 Kelemen, P.B. Hanghoj, K., Green. A.R., 2004. One view of the geochemistry of subduction related arc with an emphasis on primitive andesites and lower crust. Treatise on Geochemistry/Eds. PP. 593–653. https://doi.org/10.1016/B0-08-043751-6/03035-8 Kelemen, P.B. Shimizu, N., Dunn, T., 1993. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Science Letters 120(3–4), 111–134. https://doi.org/10.1016/0012-821X(93)90234-Z Kent, A.J.R., Elliott, T.R., 2002. Melt inclusions from Marianas arc lavas: Implications for the composition and formation of island arc margins. Chemical Geology 183(1–4), 263–286. https://doi.org/10.1016/S0009-2541(01)00378-3 Khakzad, A., Hajalilou, B., 1999. Investigation on Pb, Zn and Cu mineralization in northwest of Zanjan and east of Mianeh and their relation to pervasive hydrothermal alteration. 3rd Symposium of Geological Society of Iran, University of Shiraz, Shiraz, Iran. (in Persian with English abstract) Kouhestani, H., Mokhtari, M.A.A., Chang, Z., 2018a. Origin and evolution of mineralizing fluids of the Armaqan Khaneh epithermal base metal deposits, NW Iran: Fluid inclusion and stable isotope perspective. Porphyry Cu–Au–Mo mineralization system international symposium. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China. Kouhestani, H., Mokhtari, M.A.A., Chang, Z., Johnson, C.A., 2018b. Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geology Reveiws 93, 1-18. https://doi.org/10.1016/j.oregeorev.2017.12.012 Kouhestani, H., Mokhtari, M.A.A., Qin. K., Zhao, J., 2019a. Fluid inclusion and stable isotope constraints on ore genesis of the Zajkan epithermal base metal deposit, Tarom–Hashtjin metallogenic belt, NW Iran. Ore Geology Reveiws 109, 564-584. https://doi.org/10.1016/j.oregeorev.2019.05.014 Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z., Zhao, J.X., 2019b. Origin and evolution of hydrothermal fluids in the Marshoun epithermal Pb–Zn–Cu (Ag) deposit, Tarom–Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews 113, 103087. https://doi.org/10.1016/j.oregeorev.2019.103087 Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z., Zhang, X.N., 2020. Genesis of the Abbasabad epithermal base metal deposit, NW Iran: Evidences from ore geology, fluid inclusion and O–S isotopes. Ore Geology Reviews 126, 103752. https://doi.org/10.1016/j.oregeorev.2020.103752 Lakhan, N., Singh, A.K., Singh, B.P., 2020. Evolution of Late Cretaceous to Palaeogene basalt–andesite–dacite–rhyolite volcanic suites along the northern margin of the Ladakh agmatic arc, NW Himalaya, India. Earth System Science 129,108. https://doi.org/10.1007/s12040- 020- 1372-6 Lima, E.F., Nardi. L.V.S., 1998. The Lavras do Sul shoshonitic association: implications for the origin and evolution of Neoproterozoic shoshonitic magmatism in the southernmost Brazil. Journal of South American Earth Sciences 11(1), 67–77. https://doi.org/10.1016/S0895-9811(97)00037-0 Linnen, R.L., Samson, I.M., Williams-Jones, A.E., Chakhmouradian, A.R., 2013. eochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. Treatise on Geochemistry 13, 543–568. https://doi.org/10.1016/B978-0-08-095975-7.01124-4 Lubala, R.T., Frick, C., Rogers, J.H., Walraven, F.,1994. Petrogenesis of syenites and granites of the Schiel alkaline complex, northern Transvaal, South Africa. Journal of Geology 102(3), 307–316. https://www.jstor.org/stable/30070516 https://doi.org/10.1086/629673 Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews 37(3–4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9 Miyashiro, A., 1975. Classification, characteristics, and origin of ophiolites. The Journal of Geology 83(2), 249–281. https://doi.org/10.1086/628085 Moghadam, H.S., Li, Q.L., Griffin, W.L., Stern, R.J., Santos, J.F., Lucci, F., O'Reilly, S.Y., 2021. Prolonged magmatism and growth of the Iran-Anatolia Cadomian continental arc segment in Northern Gondwana. Lithos 384, 105940. https://doi.org/10.1016/j.lithos.2020.105940 Mokhtari, M.A.A., Kouhestani, H., Saiedi,. A., 2016. Investigation on type and origin of copper mineralization at Aliabad Mousavi- Khanchy occurrence, east of Zanjan, using petrological, mineralogical and geochemical data. Geosciences Scientific Quarterly Journal 25(100), 259-270. https://doi.org/ 10.22071/GSJ.2016.40756 Mousavi Motlagh, S.H., Ghaderi, M., 2019. The Chargar Au-Cu deposit: an example of low-sulfidation epithermal mineralization from the Tarom subzone, NW Iran. Neues Jahrbuch für Mineralogie-Abhandlungen. Journal of Mineralogy and Geochemistry 196(1), 43–66. https://doi.org/10.1127/ njma/2019/0158 Mousavi Motlagh, S.H., Ghaderi, M., Yasami, N., Alfonso, P., 2019. Stable isotope geochemistry of Chargar epithermal deposit: Constraints on epithermal systems in the Tarom metallogenic belt, NW Iran. Journal of Geochemical Exploration 205, 106331. https://doi.org/10.1016/j.gexplo.2019.06.013 Muller, D., Groves, D.I., 1993. Direct and indirect associations between potassic igneous rocks, shoshonites and gold – copper deposits. Ore Geology Reviews 8(5), 383 – 406. https://doi.org/ 10.1016/0169-1368(93)90035-W Muller. D., Groves. D.I., 1997. Potassic igneous rocks and associated gold-copper mineralization. Springer., Berlin. P. 311. Muller, D., Rock, N.M.S., Groves, D.I., 1992. Geochemical discrimination between shoshonilic and potassic volcanic rocks from different tectonic settings: a pilot study. Mineralogy and Petrology 46(4), 259-289 https://doi.org/10.1007/BF01173568 Nabavi, M.H., 1976. A Preface to Iran’s Geology. Geology Survey and Mineral Exploration of Iran. 109 p. Nazari, H., Salamati, R.,1998. Geological map 1: 250,000 Rudbar, Geological Survey of Iran. Nejadi, N., Nasrabadi, M., Noor Zaeem, R., Gholizadeh., 2016. Petrology of Mafic intrusive masses south of Bardaskan (northwest of Lut). Kharazmi Journal of Earth Sciences 2 (2), 271-293. (in Persian with English abstract) https://doi.org/10.29252/gnf.2.2.271 Norman, M.D., Garcia., M.O.,1999. Primitive magmas and source characteristics of the Hawaiian plume: Petrology and geochemistry of shield picrites. Earth and Planetary Science Letters 168(1–2),27–44. https://doi.org/10.1016/S0012-821X(99)00043-6 Olafsson, M.J., Elggler, D.H., 1983. phase relations of amphibole, amphibole carbonate and phlogopite- carbonate peridotite: petrological constraints on the asthenossphere, Earth and Planetary Science Letters 64(2),305-315. https://doi.org/10.1016/0012-821X(83)90212-1 Pearce, J.A., 1996. A user’s guide to basalt discrimination diagrams. Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes 12, 79-113. Pearce, T.H., Gorman, B.E., Birkett, T.C., 1977. The relationship between major element geochemistry and tectonic environment of basic and intermediate volcanic rocks. Earth and Planetary Science Letters 36(1), 121–132. https://doi.org/10.1016/0012-821X(77)90193-5 Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy And Petrology 69(1), 33–47. https://doi. Org / 10.1007/BF00375192 Peccerillo, A., Taylor, S.R., 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology 58(1), 63–81. https://doi.org/10.1007/BF00384745 Planck, T., 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology 46(5), 921–944. https://doi.org/ 10.1093/ petrology/egi005 Richards, J.P., 2005. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits. Super Porphyry Copper and Gold Deposits: A Global Perspective 1, 7–25. Sato, K., Katsura Ito, E., 1997. Phase relations of natural phlogopite with and without enstatite up to 8 Gpa: mplications for mantle metasomatism., Earth and Planetary Science Letters 164(3-4), 511-526. https://doi.org/10.1016/S0012-821X(96)00246-4 Shahzidi, M., Moayed. M., Moazen, M., Ahmadian, J., 2008. Geochemistry and petrogenesis of volcanic rocks northeast of Ardestan. Research journal of university of Isfahan "Science" 30(1), 50-29. (in Persian with English abstract) Shinjo, R., Chung, S.I., Kato, Y., Kimura, M., 1999. Geochemical and Sr–Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryuku arc: implications for the evolution of a young intracontinental back arc basin. Journal of Geophysical Research 104(B5),1059–1068. https://doi.org/10.1029/1999JB900040 Shervais, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59(1), 101-118.https://doi.org/10.1016/0012-821X(82)90120-0 Siivola, J., Schmid, R., 2007. List of mineral abbreviations. Recommendations by the IUGS Subcommission on the systematics of metamorphic rocks: Web version 01.02.07. International Union of Geological Sciences (IUGS) 1-14. http://www.bgs.ac.uk/SCMR Slovenec, D., Šegvić, B., Halamić, J., Goričan, Š., Zanoni, G., 2020. An ensialic volcanic arc along the northwestern edge of Palaeotethys—Insights from the Mid-Triassic volcano-sedimentary succession of Ivanščica Mt. (northwestern Croatia). Geological Journal 55, 4324– 4351. https://doi.org/10.1002/gj.3664 Stocklin, J., Eftekhārnezhād, J., 1969. Geological map of Zanjan, scale: 1:250,000. Geological Survey of Iran. Sun, S.S., 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences 297(1431),409–445. https://doi.org/10.1098/rsta.1980.0224 Sun, S.S., Hanson, G.N., 1975. Evolution of the mantle: geochemical evidence from alkali basalt. Geology 3(6), 297-302. https://doi.org/10.1130/0091-7613(1975) Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Taheri, M., Ashja Ardalan, A., Emami, M.H., Sheikh Zakariaei, S.J., 2019. Petrology and geochemistry of intrusive rocks west and southwest of Salafchegan. Quarterly Journal of Earth Sciences,28(111), 85-194 (in Persian with English abstract) https://doi.org/10.22071/gsj.2018.87169.1114 Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution Blackwell Scientific Publications, Oxford, P.312. https://doi.org/10.1002/gj.3350210116 Turner, S., Arnaud, N., Liu. J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P., Deng, W., 1996. Post-collision, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology 37(1), 45–71. https://doi.org/10.1093/petrology/37.1.45 Twist, D., Harmer, R.E., 1987. Geochemistry of contrasting siliceous magmatic suites in theBushveld complex: genetic aspects and implications for tectonic discrimination diagrams. Journal of Volcanology and Geothermal Research 32(1-3), 83-98. https://doi.org/10.1016/0377-0273(87)90038-2 Wang, Q., Xu. J.F., Zhao, Z.H., Bao, Z.W., Xu, W., Xiong, X. L., 2004. Cretaceous high- potassium intrusive rocks in the Yueshan–Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent. Geochemcal Journal 38(5), 417–434. https://doi.org/10.2343/geochemj.38.417 Wilson, M., 1989. Igneous petrogenesis: a global tectonic approach. Chapman and Hall, New York.p. 496. https://doi.org/10.1180/minmag.1989.053.372.15 Xu, X., Song, S., Su, L., Li, Z., Niu, Y., Allen, M.B., 2015. The 600–580 Ma continental rift basalts in North Qilian Shan, northwest China: Links between the Qilian-Qaidam block and SE Australia, and the reconstruction of East Gondwana. Precambrian Research 257, 47–64. https://doi.org/10.1016/j.precamres .2014.11.017 Zamanian, H., Rahmani, S., Zareisahameih, R., 2019. Fluid inclusion and stable isotope study of the Lubin-Zardeh epithermal Cu–Au deposit in Zanjan Province, NW Iran: Implications for oregenesis. Ore Geology Reviews 112, 103014. https://doi.org/10.1016/j.oregeorev.2019.103014 Zamaniana, H., Rahmani, S., Zareisahamieha, R., Pazokia, A., Yang, X.Y., 2020. Geochemical characteristics of igneous host rocks of Lubin-Zardeh Au–Cu deposit, NW Iran. Ore Geology Reviews 122, 103496. https://doi.org/10.1016/j.oregeorev.2020.103496 Zanetti, A., Mazzucchelli, M., Rivalenti, G., Vannucci, R., 1999. The Finero phlogopite-peridotite massif: an example of subduction related metasomatism. Contributions to Mineralogy and Petrology 134(2.3), 107- 122. https://doi.org/10.1007/s004100050472 Zartman, R.E., Doe, B.R., 1981. Plumbotectonics – the model; Tectonophys 75(1-2), 135–162. https://doi.org/10.1016/0040-1951(81)90213-4 Zheng, Y.F., Xu, Z., Chen, L., Dai, L.Q., Zhao, Z.F., 2020. Chemical geodynamics of mafic magmatism above subduction zones. Journal of Asian Earth Sciences 194, 104185. https://doi.org/10.1016/J.JSEAES.2019.104185