رخداد کانی های نادر در کانسارهای مس پورفیری: شواهدی از زون دگرسانی پتاسیک کانسار مس پورفیری سرکوه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز

2 دانشکده زمین شناسی، پردیس علوم دانشگاه تهران

10.22055/aag.2023.43575.2369

چکیده

کانسار مس پورفیری سرکوه در کمربند ماگمایی ارومیه - دختر و در ارتباط با جایگیری توده‌های نفوذی میوسن با ترکیب غالب گرانیت و گرانودیوریت درون واحدهای ائوسن شامل توف، آندزیت، آندزیت - بازالت و برش‌های پیروکلاستیکی می‌باشد. دگرسانی پتاسیک این کانسار دارای گسترش قابل توجه بوده و با کانی‌شناسی غالب مگنتیت، بیوتیت‌های ثانویه و تعادل مجددیافته همراه با انیدریت مشخص می‌گردد. در این مطالعه طیف EDX کانی‌های فرعی موجود در دگرسانی پتاسیک به منظور ردیابی کانی‌های نادر در زون دگرسانی پتاسیک مورد استفاده قرار گرفت. همچنین نتایج آنالیز ریزکاونده الکترونی (EMPA) بر روی پاراژنز مگنتیت‌ همراه با کانی‌های نادر به منظور بررسی شرایط فیزیکوشیمیایی رخداد این کانی‌ها مورد تحلیل قرار گرفت. نتایج نشان‌دهنده رخداد غیر معمول اپیدو‌ت‌های غنی از Ce و La به همراه مونازیت‌های غنی از عناصر نادر خاکی و نیز تیتانیت‌های سریم‌دار همراه با مجموعه‌های آپاتیت، انیدریت، بیوتیت گرمابی، کوارتز و مگنتیت در زون دگرسانی پتاسیک این کانسار می‌باشد. داده‌های حاصل از شیمی مگنتیت نیز نقش سیال ماگمایی–گرمابی اولیه دما بالا (بیشتر از 500 درجه سانتی گراد) را با نرخ برهمکنش پایین سیال گرمابی و سنگ دیواره در شکل‌گیری این مگنتیت‌ها نشان می‌دهد. این مگنتیت‌ها بعضا در همراهی با هماتیت و انیدریت یافت می‌شوند که تایید‌کننده شرایط فوگاسیته اکسیژن بالا، نزدیک محدوده بافری مگنتیت-هماتیت (~ΔFMQ+4) می‌باشد. با توجه به نوع رخداد و شیمی پاراژنز مگنتیت، به نظر می‌رسد تشکیل کانی‌های نادر عموما مربوط به مرحله پیش از کانه‌زایی سولفیدی در دگرسانی پتاسیک این کانسار باشد.

کلیدواژه‌ها

موضوعات


Aghazadeh, M., Hou, Z., Badrzadeh, Z., Zhou, L., 2015. Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore Geology Reviews 70, 385–406. https://doi.org/10.1016/j.oregeorev.2015.03.003
Asadi, S., 2018. Triggers for the generation of post-collisional porphyry Cu systems in the Kerman magmatic copper belt, Iran: New constraints from elemental and isotopic (Sr–Nd–Hf–O) data. Gondwana Research 64, 97-121. https://doi.org/10.1016/j.gr.2018.06.008
Asadi, S., Moore, F., Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Science Reviews 138, 25–46. https://doi.org/10.1016/j.earscirev.2014.08.001
Asadi, S., Moore, F., Zarasvandi, A., Khosrojerdi, M., 2013. First report on the occurrence of CO2–bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralization processes in a continental collision setting. Geologos 19, 301–320.  https://doi.org/10.2478/logos–2013–0019.
Canil, D., Lacourse, T., 2020. Geothermometry using minor and trace elements in igneous and hydrothermal magnetite. Chemical Geology 541, 119576. https://doi.org/10.1016/j.chemgeo.2020.119576
Cao, C., Shen, P., Pan, H., Zheng, L., Li, C., Feng, H., 2020. The formation mechanism of reduced porphyry Mo deposits in the West Junggar region, Xinjiang: The Suyunhe example. Ore Geology Reviews 117, 103286. https://doi.org/10.1016/j.oregeorev.2019.103286
Deditius, A.P., Reich, M., Simon, A.C., Suvorova, A., Knipping, J., Roberts, M.P., Rubanov, S., Dodd, A., Saunders, M., 2018. Nanogeochemistry of hydrothermal magnetite. Contributions to Mineralogy and Petrology 173, 1-20. https://doi.org/10.1007/s00410-018-1474-1
Dupuis, C., Beaudoin, G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita 46, 319–335. https://doi.org/10.1007/s00126-011-0334-y
Hu, H., Li, J.W., Lentz, D., Ren, Z., Zhao, X.F., Deng, X.D, Hall, D., 2014. Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit: Insights into ore genesis and implication for in-situ chemical analysis of magnetite. Ore Geology Reviews 57, 393–405. https://doi.org/10.1016/j.oregeorev.2013.07.008
Kaniran Consulting Company, 2008. Final report on the geology and alteration of Sarkuh region in 1:5000 scale, P. 256.
Karimpour, M.H., Sadeghi, M., 2019. A new hypothesis on parameters controlling the formation and size of porphyry copper deposits: Implications on thermal gradient of subducted oceanic slab, depth of dehydration and partial melting along the Kerman copper belt in Iran. Ore Geology Reviews 104, 522–539. https://doi.org/10.1016/j.oregeorev.2018.11.022
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Wӓlle, M., Heinrich, C.A., Holtz, F., Munizaga, R., 2015. Trace elements in magnetite from massive iron oxide apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochimica Acta 171, 15–38. https://doi.org/10.1016/j.gca.2015.08.010
McInnes, B.I.A., Evans, N.J., Fu, F.Q., Garwin, S., 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry 58, 467-498. https://doi.org/10.2138/rmg.2005.58.18
Nadoll, P., Angerer, T., Mauk, J.L., French, D., Walshe, J., 2014. The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews 61, 1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013
Nadoll, P., Mauk, J.L., Leveille, R.A, Koenig, A.E., 2015. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Mineralium Deposita 50, 493–515. https://doi.org/10.1007/s00126-014-0539-y
Nourali, S., Mirnejad, H., 2012. Hydrothermal evolution of the Sarkuh porphyry copper deposit, Kerman, Iran: a fluid inclusion and sulfur isotope investigation. Geopersia 2, 93–107. https://doi.org/10.22059/JGEOPE.2012.29234
Rezaei, M., 2017. Effective Parameters in Mineralization Potential of Economic And Subeconomic Porphyry Copper Deposits in Urumieh- Dokhtar Magmatic Zone: Using Geochemical And Fluid Inclusion Studies. Ph.D thesis. Shahid Chamran University of Ahvaz.
Rezaei, M., Zarasvandi, A., 2020. Titanium-in-biotite thermometry in porphyry copper systems: challenges to application of the thermometer. Resource Geology 70, 157–168. https://doi.org/10.1111/rge.12227
Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews 40, 1–26. https://doi.org/10.1016/j.oregeorev.2011.05.006
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology 105, 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
Sun, W., Huang, R., Li, H., Hu, Y., Zhang, C., Sun, S., Zhang, L., Ding, X., Li, C., Zartman, R.E., Ling, M., 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews 65, 97–131. https://doi.org/10.1016/j.oregeorev.2014.09.004
Tian, J., Zhang, Y., Gong, L., Francisco, D.G., Berador, A.E., 2021. Genesis, geochemical evolution and metallogenic implications of magnetite: Perspective from the giant Cretaceous Atlas porphyry Cu–Au deposit (Cebu, Philippines). Ore Geology Reviews 133, 104084. https://doi.org/10.1016/j.oregeorev.2021.104084
Wang, Y.H., Zhang, F.F., Li, B.C., 2017. Genesis of the Yandong porphyry Cu deposit in eastern Tianshan, NW China: evidence from geology, fluid inclusions and isotope systematics. Ore Geology Reviews 86, 280–296. https://doi.org/10.1016/j.oregeorev.2017.02.020
Wen, G., Li, J.W., Hofstra, A.H., Koenig, A.E., Lowers, H.A., Adams, D., 2017. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton. Geochimica et Cosmochimica Acta 213, 255-270. https://doi.org/10.1016/j.gca.2017.06.043
Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187. https://doi.org/10.2138/am.2010.3371
Zarasvandi, A., Heidari, M., Rezaei, M., Raith, J., Asadi, S., Saki, A., Azimzadeh, A., 2019b. Magnetite chemistry in the porphyry copper systems of Kerman Cenozoic magmatic arc, Kerman, Iran. Iranian Journal of Science and Technology, Transactions A: Science 43, 839–862. https://doi.org/10.1007/s40995-019-00677-6
Zarasvandi, A., Rezaei, M., Raith, J.G., Asadi, S., Lentz, D.R., 2019. Hydrothermal fluid evolution in collisional Miocene porphyry copper deposits in Iran: Insights into factors controlling metal fertility. Ore Geology Reviews 105, 183–200. https://doi.org/10.1016/j.oregeorev.2018.12.027
Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S., Saed, M., Lentz, D.R., 2018. Metal endowment reflected in chemical composition of silicates and sulfide s of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc. Iran Geochimica et Cosmochimica Acta 223, 36–59. https://doi.org/10.1016/j.gca.2017.11.012
Zarasvandi, A., Rezaei, M., Raith, J.G., Taheri, M., Asadi, S., Heidari, M., 2023. Magnetite chemistry of the Sarkuh Porphyry Cu deposit, Urumieh–Dokhtar Magmatic Arc (UDMA), Iran: A record of deviation from the path sulfide mineralization in the porphyry copper systems. Journal of Geochemical Exploration 249, 107213. https://doi.org/10.1016/j.gexplo.2023.107213
Zarasvandi, A., Rezaei, M., Sadeghi, M., Lentz, D., Adelpour, M., Pourkaseb, H., 2015. Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA), Iran. Ore Geology Reviews 70, 407–423. https://doi.org/10.1016/j.oregeorev.2015.01.010
Zarasvandi, A., Taheri, M., Rezaei, M., Raith, J., 2022. Investigation of the behavior of rare earth elements and trace elements in Sarkuh porphyry copper deposit, Kerman, Iran. Advanced Applied Geology 11(4), 690-709. https://doi.org/10.22055/AAG.2021.35086.2166