Abedi, R., Costache, R., Shafizadeh-Moghadam, H., Pham, Q.B., 2022. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto International 37, 5479-5496. https://doi.org/10.108
/10106049.2021.1920636.
Al-Dousari, M., Garrouch, A.A., Al-Omair, O., 2016. Investigating the dependence of shear wave velocity on petrophysical parameters. Journal of Petroleum Science and Engineering 146, 286-296. https://doi.org/10.1016/ j.petrol.2016.04.036.
Anemangely, M., Ramezanzadeh, A., Tokhmechi, B., 2017. Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: A case study from Ab-Teymour Oilfield. Journal of Natural Gas Science and Engineering 38, 373-387. https://doi.org/10.1016/j.jngse.2017.01.003.
Anifowose, F.A., Labadin, J., Abdulraheem, A., 2017. Ensemble machine learning: An untapped modeling paradigm for petroleum reservoir characterization. Journal of Petroleum Science and Engineering 151, 480-487. https://doi.org/10.1016 /j.petrol.2017.01.024.
Anselmetti, F.S., Eberli, G.P., 1993. Controls on sonic velocity in carbonates. Pure and Applied geophysics 141, 287-323. https://doi.org/10.1007/BF00998333.
Breiman, L., 1996. Bagging predictors. Machine learning 24, 123-140. https://doi.org/10.1007/BF00058655.
Castagna, J.P., Batzle, M.L., Eastwood, R.L., 1985. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. geophysics 50, 571-581. https://doi.org/10.1190/1.1441933.
Chang, J.F., Dong, N., Ip, W.H., Yung, K.L., 2019. An ensemble learning model based on Bayesian model combination for solar energy prediction. Journal of Renewable and Sustainable Energy 11, 043702. https://doi.org/10.1063/1.5094534.
Chen, T. and Guestrin, C., 2016, August. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 785-794. https://doi.org/10.1145/2939672.2939785.
Da Silva, R.G., Ribeiro, M.H.D.M., Moreno, S.R., Mariani, V.C., dos Santos Coelho, L., 2021. A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting. Energy 216, 119174. https:// doi.org/10.1016/j.energy.2020.119174.
Eberhart-Phillips, D., Han, D.H., Zoback, M.D., 1989. Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics 54, 82-89. https://doi.org/10.1190/1.1442580.
Eskandari, H., Rezaee, M.R., Mohammadnia, M., 2004. Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran. CSEG recorder 42, 48. https://doi.org/10.4236/ojg.2014.47023.
Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer classification using support vector machines. Machine Learning 46, 389-422. https://doi.org/10.1023/A:1012487302797.
Jabeur, S.B., Gharib, C., Mefteh-Wali, S., Arfi, W.B., 2021. CatBoost model and artificial intelligence techniques for corporate failure prediction. Technological Forecasting and Social Change 166, 120658. https://doi.org/10.1016/j.techfore.2021.120658.
Jafarzadeh, H., Mahdianpari, M., Gill, E., Mohammadimanesh, F., Homayouni, S., 2021. Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and PolSAR data: a comparative evaluation. Remote Sensing 13, 4405. https://doi.org/10.3390/rs13214405.
Kavianpor Sangno, M., Namdarian, A., Mousavi-Harami, S.R., Mahboubi, A. and Omidpour, A., 2015. The Study of Role and Texture of Anhydrite in Production Zone of Asmari Formation in Mansuri Oil Field, Zagros, Iran. Scientific Quarterly Journal of Geosciences 24, 203-216. https://doi.org/10.22071/gsj.2015.42659.