Deformation microthermometry in the Toutak gneiss dome based on petrofabric characteristics of quartz crystal, Sanandaj-Sirjan metamorphic belt, Iran


1 Department of Earth Sciences, School of Science, Shiraz University

2 Department of Earth Sciences, Shiraz University

3 Fars Education Organization, Shiraz, Iran


Gneissic domes are evidence of vertical movements in both compressional and extensional tectonic regimes in orogenic systems. These domes are evidence of mutual interaction between gravitational and tectonic forces in the continental crust. Gneissic domes have unique structures in deformed regions. These domes include a complex of deformed metamorphic rocks and intrusive masses covered with the upper layers of the crust. The Toutak gneissic dome is located in the high-pressure-low-temperature Sanandaj-Sirjan metamorphic belt and is an example of gneissic domes in the Zagros orogenic system. The purpose of this research is to determine the deformation temperature based on the petrofabric characteristics of quartz minerals in the mylonite rocks exposed in the Toutak gneissic dome. The temperature obtained from the quartz c-axis pattern shows the temperature range from 260±50 to 565±50 °C for the deformation. The asymmetry of quartz c-axis patterns indicates the occurrence of dextral shear during the deformation.


Main Subjects

Alavi, A., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–38.
Alizadeh, A., Lopez Martınez, M., Sarkarinejad K., 2010. 40Ar-39Ar Geochronology in a gneiss dome within the Zagros Orogenic Belt. C.R. Geoscience 342, 837–846. https://doi.org10.1016/j.crte.2010.07.005
Amato, J.M., Wright, J.E., Gans, P.B., Miller, E.L., 1994. Magmatically induced metamorphism and deformation in the Kigluaik gneiss dome, Seward Peninsula, Alaska. Tectonics 13, 515–527. https://doi.org10.1029/93TC03320
Bailey, C.M., Eyster, E.L., 2003. General shear deformation in the Pinalen ˜o Mountains metamorphic core complex, Arizona. Journal of Structural Geology 25, 1883–1892. https://doi.org10.1016/S0191-8141(03)00044-0
Berberian, M., King, G.C., 1981.Towards a palaeogeography and tectonics evolution of Iran. Canadian Journal of Earth Sciences 18, 210–265. 10.1139/e81-019
Berberian, F., Berberian, M., 1981. Tectono- plutonic episodes in Iran. Amer. Geophy. Union. Geodynamics series. 5- 32.
Blanc, E.J.P., Allen, M.B., Inger, S., Hassani, H., 2003. Structural styles in the Zagros simple folded zone, Iran. Journal of Structural Geology 160, 401–12.
Burg, J., Kaus, B., Podladchikov, Y., 2004. Dome structures in collision orogens: Mechanical investigation of the gravity/compression interplay in Whitney, D.L, Teyssier, C., and Siddoway, C.S., Gneiss domes in orogeny: Boulder, Colorado. Geological Society of America,Special Paper 380, 47–66. https://doi.org10.1130/0-8137-2380-9.47
Burg, J.P., Brunel, M., Gapais, D., Chen, G.M., Liu, G.H., 1984. Deformation of leucogranites of the Crystalline Main Central Thrust Sheet in southern Tibet (China). Journal of Structural Geology 6(5), 535-542. 10.1016/0191-8141(84)90063-4.
Coney, P., 1980. Cordilleran metamorphic core complexes: an overview. Geological Society of America Memoir 153, 7–31.
Davis, G.A., Lister, G.S., 1988. Detachment faulting in continental extension; perspectives from the Southwestern U.S. Cordillera, in Clark, S.P., Burchfiel, B.C., Suppe, J., Processes in continental lithospheric deformation, Geological Society of America Special Paper 218, 133-159. 10.1130/SPE218-p133
Dewey, J.F., Pitman Iii, W.C., Ryan, W.B.F. Bonini, J., 1973. Plate tectonics and the evolution of the Alpine System. Geological Society of America Bulletin 84, 3137–80.<3137:PTATEO>2.0.CO;2
Eskola, P.E., 1949. The problem of mantled gneiss domes: Quarterly. Journal of the Geological Society of London 104, 461–476.
Faghih, A. Soleimani, M., 2015. Quartz c-axis fabric development associated with shear deformation along an extensional detachment shear zone: Chapedony Metamorphic Core Complex, Central-East Iranian Microcontinent. Journal of Structural Geology 70, 1–11.
Faghih, A., Soleimani, M., Partabian, A., 2020. Exhumation style of the Chapedony core complex, Central Iran: insights from kinematic vorticity analysis. Geotectonics 54, 705–712.
Frassi, C., Carosi, R., Montomoli, C., Law, R.D., 2009. Kinematics and vorticity of flow associated with post- collisional oblique transpression in the Variscan Inner Zone of northern Sardinia (Italy). Journal of Structural Geology 31, 1458–71. 10.1016/j.jsg.2009.10.001
Ghasemi, A., Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Science 26, 683–93. https://doi.org10.1016/j.jseaes.2005.01.003
Hannah, P., 2006. Kinematatic Analysis of a proposed gneiss dome and possible Big sky orogeny structure, Highland Mountantains, Southwest Montana. Washington and Lee University.
Harris, L.B., Koyi, H.A., Fossen, H., 2002. Mechanisms for folding of high- grade rocks in extensional tectonic settings. earth science reviews 59, 163–210. 10.1016/S0012-8252(02)00074-0
Keshavarz, S., Faghih, F., 2020. Heterogeneous sub–simple deformation in the Gol–e–Gohar shear zone (Zagros, SW Iran): insights from microstructural and crystal fabric analyses. international journal earth sciences 109, 421–438. 10.1007/s00531-019-01812-9
Kruhl, J.H., 1998. Reply: Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology 16, 142–6. 10.1046/j.1525-1314.1996.00413.x
Law, R.D., 1990. Crystallographic fabrics: a selective review of their applications to research in structural geology. In Deformation Mechanisms, Rheology and Tectonics (eds R. J. Knipe & E. H. Rutter), 335–52. Geological Society of London, Special Publication no 54. 10.1144/GSL.SP.1990.054.01.30
Law, R.D., 2010. Moine Thrust zone mylonites at the Stack of Glencoul: II – results of vorticity analyses and their tectonic significance. In Continental Tectonics and Mountain Building (eds R. D. Law, R. Butler, B. Holdsworth, M. Krabbendam., R. Strachan). The Legacy of Peach and Horne; Geological Society of London, Special Publication no. 335, pp 579–602. 10.1144/SP335.24
Law, R.D., 2014. Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: a review. Journal of Structural Geology 66, 129–161.
Law, R.D., Searle, M.P., Simpson, R.L., 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet. Journal of the Geological Society, London, 161, 305–320.
Lee, C.T., Kelson, K.I., Kang, K.H., 2000. Hanging wall deformation and its effect on buildings and structures as learned from the Chelungpu faulting in the 1999 Chi-Chi Taiwan earthquake. In: Lo, C.-H. and Liao, W.-I. (eds), Proceedings of International Workshop on Annual Commemoration of Chi-Chi Earthquake. Science Aspect: Taipei. National Center for Research on Earthquake Engineering, 93–104.
Lister, G.S., Hobbs, B.E., 1980. The simulation of fabric development during plastic deformation and its application to quartzite: The influence of deformation history. Journal of Structural Geology 2(3), 355-370. 10.1016/0191-8141(80)90023-1
Lister, G.S., Davis, G.A., 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region. U.S.A. Journal of Structural Geology 11, 65–94. 10.1016/0191-8141(89)90036-9
Mahmoudi Sivand, S., Faghih, A., Keshavarz, S., Soleimani, M., 2021. Characterizing syn-convergent extension along the Neybaz-Chatak detachment shear zone, Central Iran: insights from microstructures, quartz petrofabrics and flow vorticity analysis. Journal of Structural Geology 143, 104-270.
Marques, F., Schmid, D., Anderson, T., 2007. Applications of inclusion behaviour models to a major shear zone system: the Nordfjore–Sogen detachment zone in western Norway. Journal of Structural Geology 29, 1622–1631. 10.1016/j.jsg.2007.05.008
Morgan, S.S. Law, R.D., 2004. Unusual transition in quartzite dislocation creep regimes and crystal slip systems in the aureole of the Eureka Valley–Joshua Flat–Beer Creek pluton, California: a case for anhydrous conditions created by decarbonation reactions. Tectonophysics 384(1-4), 209-231. 10.1016/j.tecto.2004.03.016
O’Neill, J.M., Duncan, M.S., Zartman, R.E., 1988. An early Proterozoic gneiss dome in the Highland Mountains, southwestern Montana, in Lewis, S.E., and Berg, R.B., eds., Precambrian and Mesozoic plate margins: Montana Bureau of Mines and Geology Special Publication 96, 81–88.
Passchier, C.W., 1987. Stable positions of rigid objects in non-coaxial flow: a study in vorticity analysis. Journal of Structural Geology 9, 679–690.
Passchier, C.W., 1988. Analysis of deformation paths in shear zones. Geologische Rundschau 77, 309–318. 10.1007/BF01848692
Passchier, C.W., Trouw, R.A.J., 2005. Microtectonics: New York, Springer, P. 366. 10.1007/3-540-29359-0
Passchier, C.W., Urai, J.L., 1988. Vorticity and strain analysis using Mohr diagrams. Journal of Structural Geology 10, 755–763. 10.1016/0191-8141(88)90082-X
Samani, B., 2013. Quartz c-axis evidence for deformation characteristics in the Sanandaj–Sirjan metamorphic belt, Iran. Journal of African Earth Sciences 81, 28-34.
Sarkarinejad, K., Azizi, A., 2008. Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. Journal of Structural Geology 30, 116-136. 10.1016/j.jsg.2007.10.001
Sarkarinejad, K., Keshavarz, S., Faghih, A., 2015. Kinematics of the Sirjan mylonite nappe, Zagros Orogenic Belt: insights from strain and vorticity analyses. Journal of Geosciences 60, 189–202.
Schmid, S.M., Casey, M., 1986. Complete fabric analysis of some commonly observed quartz c-axis patterns in mineral and rock deformation. In: Hobbs, B.E., Heard, H.C. (Eds.), Mineral and rock deformation: laboratory studies: The Paterson Volume: American Geophysical Union, Geophysical Monograph, 36, 263–286.
Simpson, C., De Paor, D.G., 1993. Strain and kinematic analysis in general shear zones. Journal of Structural Geology 15, 1–20. 10.1016/0191-8141(93)90075-L
Soleimani, M., Faghih, A., Kusky, T., 2021. Mesozoic compressional to extensional tectonics in the Central East Iranian Microcontinent: evidence from the Boneh Shurow metamorphic core complex. Journal of Geological Society of London.
Stocklin, J., 1968. Structural history and tectonics of Iran: a review. Bulletin of the American Association of Petroleum Geologists 52, 1229–1258.
Sullivan, W.A., 2008. Significance of transport-parallel strain variations in part of the Raft River shear zone, Raft River Mountains, Utah, USA. Journal of Structural Geology 30(2), 138-158. 10.1016/j.jsg.2007.11.007
Teyssier, C., Whitney, D.L., 2002. Gneiss domes and orogeny. Geology 30, 1139–1142,<1139:GDAO>2.0.CO;2
Thigpen, J.R., Lawa, R.D., Lloyd, G.E.; Brown, S.J., 2010. Deformation temperatures, vorticity of flow, and strain in the Moine thrust zone and Moine nappe: Reassessing the tectonic evolution of the Scandian forelandehinterland transition zone. Journal of Structural Geology 32(7), 920-940. 10.1016/j.jsg.2010.05.001
Tikoff, B., Teyssier, C., 1994. Strain and fabric analyses based on porphyroclast interaction. Journal of Structural Geology 16(4), 477–491. 10.1016/0191-8141(94)90092-2
Xypolias, P., 2010. Vorticity analysis in shear zones: A review of methods and applications. Journal of Structural Geology 32, 2072–2092.
Xypolias, P., Spanos, D., Chatzaras, V., Kokkalas,S. Koukouvelas, I., 2010. Vorticity of flow in ductile thrust zones: examples from the Attico–Cycladic Massif (Internal Hellenides, Greece). In Continental Tectonics and Mountain Building (eds R. D. Law, R. Butler, B. Holdsworth, M. Krabbendam, R. Strachan), 687–714. Geological Society of London, Special Publication no. 335. 10.1144/SP335.28 0305-8719/10/$15.00
Xypolias, P., Doutsos, T., 2000. Kinematics of rock flow in a crustal-scale shear zone: implication for the orogenic evolution of the southwestern Hellenides. Geological Magazine 137, 81–96. 10.1017/S0016756800003496
Yin, A., 2004. Gneiss domes and gneiss dome systems. Geological Society of America Special Paper 380. 10.1130/0-8137-2380-9.1