Geochemistry mineral chemistry, and tectonic setting of the metabasites in the SE of Boroujerd, Sanandaj–Sirjan zone


1 Department of geology, faculty of science,s, lorestan university. Khorramabad, Iran

2 Department of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Iran

3 Department of geology, Payame Noor University, Tehran, Iran


The late Triassic metabasites in the southeast of Borujerd area in the middle part of Sanandaj Sirjan zone (SaSZ) are associated with marble and locally intersected by mafic dykes. Metabasites rocks are metamorphosed in the lower green schist facies and are mainly composed of plagioclase and amphibole. However, they locally preserve ophitic and porphyritic igneous textures. The electronmicroprope analysis showed that feldspars are albite, oligoclase and anorthoclase. Also, according to this analysis, type of amphiboles is calcic and includes actinolite, actinolite-hornblend, magnesiohornblend and tschermakit-hornblend to tschermakit. According to geochemical studies, these rocks have alkaline magmas characteristics. The chondrite normalized REE patterns show enrichment in LREE and the Primitive-Mantle normalized multi-element patterns show uniformly enriched LREE, Th, Nb, Ta. These characteristics are similar to those of basalts derived from OIB-like mantle sources. Trace-element ratios, including Ce/Nb (1.22– 2.20), Hf/Nb (0.08–0.2), Zr/Nb (3.63–6) and high TiO2/Yb and Nb/Yb ratios, indicate that these magmas were derived from a deep OIB reservoir, i.e. an enriched asthenospheric mantle source. These rocks underwent slight crustal contamination. These geochemical characteristics of these late Triassic metabasites suggests that they formed in an intra-continental rifting regime.


Main Subjects

Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine 148(5-6), 692-725.
Anderson, J.L., 1996. Status of thermobarometry in granitic batholiths Earth and Environmental Science Transactions of the Royal Society of Edinburgh 87(1-2), 125-138.
Azizi, H., Stern, R. J. 2019. Jurassic igneous rocks of the central Sanandaj–Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc. Terra Nova 31(5), 415-423.
Azizi, H., Lucci, F., Stern, R.J., Hasannejad, S. Asahara, Y., 2018. The Late Jurassic   Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone, northwest Iran: Mantle plume or active margin?. Lithos, 308, 364-380.
Azizi, H., Zanjefili-Beiranvand, M., Asahara, Y. 2015. Zircon U–Pb ages and petrogenesis of a tonalite–trondhjemite–granodiorite (TTG) complex in the northern Sanandaj–Sirjan zone, northwest Iran: Evidence for Late Jurassic arc–continent collision. Lithos 216, 178-195.
Bas, M.L., Maitre, R.L., Streckeisen, A., Zanettin, B. IUGS Subcommission on the Systematics of Igneous Rocks, 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750.
Berberian, F. Berberian, M., 1981. Tectono-plutonic episodes in Iran. Zagros Hindu Kush Himalaya Geodynamic Evolution 3, 5-32.
Bienvenu, P., Bougault, H., Joron, J.L., Treuil, M. Dmitriev, L., 1990. MORB alteration: Rare-earth element/non-rare-earth hygromagmaphile element fractionation. Chemical Geology 82, 1-14.
Condie, K.C., 2005. High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes? Lithos 79(3-4), 491-504.‏
Cotten, J., Le Dez, A., Bau, M., Caroff, M., Maury, R.C., Dulski, P., Fourcade, S., Bohn, M., Brousse, R., 1995. Origin of anomalous rare earth element and yttrium enrichment in subaerially exposed basalts: Evidence from France Polynesia. Chemical Geology 119 (1-4), 115–138.
Davoudian, A.R., Genser, J., Dachs, E. Shabanian, N., 2008. Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan zone, Iran. Mineralogy and Petrology 92, 393-413.
Deer, W.A., Howie, R. A., Zussman, J., 1991. An introduction to the rock-forming minerals. Longman, London, P.712.
Deevsalar, R., Shinjo, R., Ghaderi, M., Murata, M., Hoskin, P.W.O., Oshiro, S., Wang, K.L., Lee, H.Y., Neill, I., 2017. Mesozoic–Cenozoic mafic magmatism in Sanandaj–Sirjan Zone, Zagros Orogen (Western Iran): Geochemical and isotopic inferences from Middle Jurassic and Late Eocene gabbros. Lithos 284-285, 588-607.
Deevsalar, R., Shinjo, R., Wang, K.L., Yeganehfar, H., Neill, I., 2018. Gabbroic-dioritic dykes from the Sanandaj-Sirjan Zone: windows on Jurassic and Eocene geodynamic processes in the Zagros Orogen, western Iran. Journal of the Geological Society 175(6), 915-933.
Esna-Ashari, A., Tiepolo, M., Valizadeh, M. V., Hassanzadeh, J., Sepahi, A. A. 2012. Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan zone, Iran. Journal of Asian Earth Sciences 43(1), 11-22.‏
Féménias, O., Mercier, J.C.C., Nkono, C., Diot, H., Berza, T.,  Tatu, M., Demaiffe, D., 2006. Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru Dike Swarm (Southern Carpathians, Romania). American Mineralogist 91(1), 73-81. DOI: 10.2138/am.2006.1869
Fergusson, C.L., Nutman, A.P., Mohajjel, M. Bennett, V.C., 2016. The Sanandaj–Sirjan Zone in the Neo-Tethyan suture, western Iran: Zircon U–Pb evidence of Late Palaeozoic rifting of northern Gondwana and mid-Jurassic orogenesis. Gondwana Research, 40, 43-57.
Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson, B.S., Taylo, R.N., 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters 153(3-4), 197-208.
Floyd, P.A. Winchester, J.A., 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters 27(2), 211-218.
Ghasemi, A. Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences 26(6), 683-693.
Gurenko, A.A., Hoernle, K.A., Hauff, F., Schmincke, H.U., Han, D., Miura, Y.N.,Kaneoka, I., 2006. Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: Insights into mantle and crustal processes. Chemical Geology 233(1-2), 75-112.
Hajmolla-Ali, A., Sahandi, M.R., 1989. Geological quadrangle map of the Borujerd area, 1:100000, No: 5757, Geological Survey of Iran, Tehran, Iran.
Hassanzadeh, J. Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin‐arc transitions. Tectonics 35(3), 586-621.
Helz, R.T., 1973. Phase relations of basalts in their melting range at PH2O= 5 kb as a function of oxygen fugacity: part I. Mafic phases. Journal of Petrology 14(2), 249-302.
Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H. Sisson, V.B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist 72(3-4), 231-239.
Howie, R.A., Zussman, J. and Deer, W., 1992. An introduction to the rock-forming minerals. London, UK: Longman. P. 696
Hunziker, D., Burg, J. P., Bouilhol, P., von Quadt, A. 2015. Jurassic rifting at the Eurasian Tethys margin: Geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics 34(3), 571-593.‏
Khalaji, A. A., Esmaeily, D., Valizadeh, M. V., Rahimpour-Bonab, H. 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences 29(5-6), 859-877.‏
Khalaji, A. A.,2006. Petrology of the granitoid rocks of the Boroujerd area. Ph.D Thesis, University of Tehran, Tehran, Islamic Republic of Iran.
Leake, B.E., Woolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G. Linthout, K., 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist 35(1), 219-246.
Lechmann, A., Burg, J. P., Ulmer, P., Mohammadi, A., Guillong, M., Faridi, M. 2018. From Jurassic rifting to Cretaceous subduction in NW Iranian Azerbaijan: geochronological and geochemical signals from granitoids. Contributions to Mineralogy and Petrology 173, 1-16.
Lin, C., Zhang, J., Wang, X., Putthapiban, P., Zhang, B., Liu, K. Huang, T., 2020. Late Triassic back-arc spreading and initial opening of the Neo-Tethyan Ocean in the northern margin of Gondwana: Evidences from Late Triassic BABB-type basalts in the Tethyan Himalaya, Southern Tibet. Lithos 358, 105408.
Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb, Zr, Y diagram. Chemical Geology 56(3-4), 207-218.
Mohajjel, M. Fergusson, C.L., 2000. Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Structural Geology 22(8), 1125-1139.
Mohajjel, M. Fergusson, C.L., 2014. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56(3), 263-287.
Mohajjel, M., Fergusson, C.L. Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4), 397-412.
Moinevaziri, H., Akbarpour, A. Azizi, H., 2015. Mesozoic magmatism in the northwestern Sanandaj–Sirjan zone as an evidence for active continental margin. Arabian Journal of Geosciences, 8, 3077-3088.
Mousivand, F., Rastad, E., Meffre, S., Peter, J.M., Solomon, M. Zaw, K., 2011. U–Pb geochronology and Pb isotope characteristics of the Chahgaz volcanogenic massive sulphide deposit, southern Iran. International Geology Review 53(10), 1239-1262.
Muttoni, G., Gaetani, M., Kent, D.V., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, E., Mattei, M. Zanchi, A., 2009. Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14(4), 17-48.
Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5), 757-775.
Navabpour, P., Angelier, J. Barrier, E., 2010. Mesozoic extensional brittle tectonics of the Arabian passive margin, inverted in the Zagros collision (Iran, interior Fars). Geological Society, London, Special Publications 330(1), 65-96.
Pearce, J.A. Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and planetary Science Letters 19(2), 290-300.
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4), 14-48.
Radfar, J., 1988. The study of geology and petrology of granitoid rocks in the Astana-Ghosheh area. M.Sc. thesis, Tehran University.
Rollinson, H.R., 2014. Using geochemical data: Evaluation, presentation, interpretation. Longman Scientific & Technical. P. 384.
Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. Treatise on Geochemistr 3, 1-64.
Sahandi, M. R., Radfar, J., Hoseinidost, J., Mohajjel, M., 2006. Geological quadrangle map of the Shazand area, 1:100000, Geological Survey of Iran, Tehran, Iran.
Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 110(2-3),
Shakerardakani, F., Neubauer, F., Bernroider, M., Von Quadt, A., Peytcheva, I., Liu, X., Genser, J., Monfaredi, B. Masoudi, F., 2017. Geochemical and isotopic evidence for Carboniferous rifting: mafic dykes in the central Sanandaj-Sirjan zone (Dorud-Azna, West Iran). Geologica Carpathica 68(3), 229-247.
Shervais, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and planetary Science Letters 59(1), 101-118.
Stöcklin, J., 1968. Structural history and tectonics of Iran: A review. American Association of Petroleum Geologists Bulletin, 52(7), 1229–1258.
Stocklin, J.,Nabavi, M.H., 1973. Tectonic map of Iran. Geological Survey of Iran, 1(5).
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications 42(1), 313-345.
Willson, M., 1989. Igneous petrogenesis: A global tectonic approach, Springer Dordrecht. P. 466. 
Winchester, J.A. Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325-343.
Wood, D.A., 1980. The application of a Th, Hf, Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters 50(1), 11-30.
Zhang, H., Chen, J., Yang, T., Hou, Z. Aghazadeh, M., 2018. Jurassic granitoids in the northwestern Sanandaj–Sirjan Zone: Evolving magmatism in response to the development of a Neo-Tethyan slab window. Gondwana Research 62, 269-286.
Zhu, D., Mo, X., Pan, G., Zhao, Z., Dong, G., Shi, Y., Liao, Z., Wang, L. Zhou, C., 2008. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet: Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere? Lithos 100(1-4), 147-173.