Study of garnet-amphibolite and garnet mica schist from the Faryab complex with an approach to field data, petrography and chemistry of constituent minerals

Authors

1 Department of Geology, Faculty of Earth Sciences, University of Shahid Beheshti, Tehran, Iran

2 Department of Geology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran

3 Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

Abstract

Garnet amphibolite and garnet micaschists of the Faryab complex, located in the southeast of the Sanandaj-Sirjan zone, are exposed immediately under the peridotites and sometimes a few meters away from the peridotites of this region with fault boundaries. Some garnet amphibolites mainly include poikiloblasts of garnet and amphibole, plagioclase, quartz, secondary minerals of epidote, biotite, chlorite, as well as oxide minerals of, magnetite, ilmenite, titanite and apatite mineral. Garnet micaschists include the main minerals garnet, amphibole, muscovite, epidote, plagioclase, quartz, and secondary minerals biotite, chlorite, rutile, apatite, titanite, and ilmenite. Considering the chemistry of garnet poikiloblasts and the chemistry of amphiboles, temperatures of 505 to 708°C and average pressures of 6.7 to 8.6 kbar (upper amphibolite facies) for garnet amphibolites and temperatures 450 to 650°C and average pressures of 6.7 to 7.2 kbar (lower amphibolite facies) have been determined for garnet micaschists. Accordingly, garnet amphibolites show the highest metamorphic degree, while garnet micaschists show a lower metamorphic degree. Such a situation indicates a type of geothermal gradient. Geochemically, garnet amphibolites can be classified in two groups. Group I, which together with garnet micaschists have the geochemical characteristics of sedimentary rocks, while garnet amphibolites of group II show the typical characteristics of basalts. The Faryab metamorphic complex next to the ophiolitic remnants of the region may indicate the evolution of this ophiolitic complex in a Neotethys accretion-subduction position during the Upper Cretaceous.

Keywords

Main Subjects


Agard, P., Omrani, J., Jolivet, L., Mouthereau. F., 2005. Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. International Journal of Earth Sciences 94, 401–419. https://doi.org/10.1007/s00531-005-0481-4.
Ali, A., Yar, M., Khan, M., 2016. Interrelationships between deformation and metamorphic events across the western Hinterland Zone, NW Pakistan. Journal of Earth Science 27(4), 584–598. https://doi.org/10.1007/s12583-016-0717-1.
Azizi, H., Stern, R.J., 2019. Jurassic igneous rocks of the central Sanandaj–Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc. Terra Nova 31(5), 415-423. https://doi.org/10.1111/ter.12404.
Bell, T.H., Johnson, S.E., Davis, B., 1992. Porphyroblast inclusion-trail orientation data: eppure non son girate. Journal of Metamorphic Geology 10(3) 295–307. https://doi.org/10.1111/j.1525-1314.1992.tb00084.x.
Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Joumal of Earth Sciences 18, 210–265. https://doi.org/10.1139/e81-163.
Babakhani, A.R., Alavi Tehrani, N., 1992. Sabzevaran geological map, scale 1/250000, geological survey and mineral exploration of Iran.
Chatterjee, N., 2016. Constraints from monazite and xenotime growth modelling in the MnCKFMASH-PYCe system on the P-T Path of a metapelite from shillong-meghalaya plateau: Implications for the Indian shield assembly. Journal of Metamorphic Geology 35(4) 393–412. https://doi.org/10.1111/jmg.12237.
Cheng, S.H., Lai, X.Y., You, Z.D., 2009. P-T paths derived from garnet growth zoning in Danba domal metamorphic terrain, Sichuan province, west china. Journal of Earth Science 20(2), 219–240. https://doi.org/10.1007/s12583-009-0022-3.
Davoudian, A.R., Genser, J., Dachs, E., Shabanian, N., 2007. Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone. Iran, Mineral, Petrolgy 92, 393–413. https://doi.org/10.1007/s00710-007-0204-6.
Ernst, W.G., Liu, J., 1998. Experimental phaseequilibrium study of Al and Ti contents of Calcic amphibole in MORB-A semiquantitative thermobarometer. American Mineralogist 83, 952-969. https://doi.org/10.2138/am-1998-9-1004.
Fleet, M.E., Barnett, R.L., 1978. A1iv/A1vi partitioning in calciferous amphiboles from the Frood mine, Sudbury, Ontario. Can. Mineral 16, 527-532. https://rruff-2.geo.arizona.edu/uploads/CM16_527.pdf.
Graham, C.M., Powell, R., 1984. A garnet-hornblende geothermometer, calibration, testing and application to the Pelona Schist, Southern California. Journal of Metamorphic Geology 2, 13–31. https://doi.org/10.1111/j.1525-1314.1984.tb00282.x.
Hammarstrom, J.M., Zen, E., 1986. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist 71, 1297-1331. https://pubs.er.usgs.gov/publication/70015213.
Haynes, J., Reynolds, H., 1980. Early development of Tethys and Jurassic ophiolite displacement. Nature 283, 561–563. https://doi.org/10.1038/283561a0.
Holdaway, M.J., 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist 86(10) 1117–1129. https://doi.org/10.2138/am-2001-1001.
Holland, T.J.B., Blundy, J.D., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433-447. https://doi.org/10.1007/BF00310910.
Hollister, L.S., Grissom, G.C., Pters, E.K., Stowell, H.H., Sisson, V.B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogis 72, 231-239. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/72/3-4/231/104937.
Johnson, M.C., Rutherford, M.J., 1989. Experimental calibration of an aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17, 837- 841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2.
Johnson, S.E., 1999. Porphyroblast microstructures: A review of current and future trends. American Mineralogist 84(11/12) 1711–1726. https://doi.org/10.2138/am-1999-11-1202.
Jones, K.A., 1994. Progressive metamorphism in a crustal-scale shear zone: An example from the Léon region, north-west Brittany, France. Journal of Metamorphic Geology 12(1) 69–88. https://doi.org/10.1111/j.1525-1314.1994.tb00004.x.
Kananian, A., Juteau, T., Bellon, H., Darvishzadeh, A., Sabzehi, M., Whitechurch, H., Ricou, L.E., 2001. The ophiolite massif of Kahnuj (western Makran, southern Iran): New geological and geochronological data. Comptes rendus de l'Académie des Sciences 332, 543–552. https://doi.org/10.1016/S1251-8050(01)01574-9.
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson., N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles: Rreport of the subcomm, on amphiboles intern. miner Ass, commiss, new minerals and mineral names, am. mineral 82, 1019-1037. https://pubs.geoscienceworld.org/canmin/article-abstract/35/1/219/12862.
Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A., Ferraris, G., Grice, J.D., Whittaker, E.J., 2004. Nomenclature of amphiboles: Additions and revisions to the international mineralogical associationʼs amphibole nomenclature. American Mineralogist 89, 883-887.
Li, S.Z., Zhao, G.C., Santosh, M., 2011. Palaeoproterozoic tectonothermal evolution and deep crustal processes in the jiao-liao-ji belt, north china craton: A review. Geological Journal 46(6) 525-543. https://doi.org/10.1002/gj.1282.
McCall, G., Kidd, R., 1982. The makran, southeastern Iran: The anatomy of a convergent plate margin active from cretaceous to present. Geological Society, London, special publications 10, 387-397. https://doi.org/10.1144/GSL.SP.1982.010.01.26.
McCall, G.J.H., 1997. The geotectonic history of the Makran and adjacent areas of southern Iran. Journal of Asian Earth Sciences 15. 517-531, https://doi.org/10.1016/S0743-9547(97)00032-9.
McCall, G.J.H., 2002. A summary of the geology of the Iranian Makran. Geological Society 195, 147-204.
McCall, G.J.H., 2003. A critique of the analogy between Archaean and Phanerozoic tectonics based on regional mapping of the Mesozoic–Cenozoic plate convergent zone in the Makran, Iran. Precambrian Research 127, 5–17. https://doi.org/10.1016/S0301-9268(03)00178-5.
Maldonado, R., Weber, B., Ortega-Gutiérrez, F., 2018. High-pressure metamorphic evolution of eclogite and associated metapelite from the chuacús complex (Guatemala Suture Zone): Constraints from phase equilibria modelling coupled with Lu-Hf and U-Pb geochronology. Journal of Metamorphic Geology 36(1) 95-124. https://doi.org/10.1111/jmg.12285.
Menold, C.A., Manning, C.E., Yin, A., Tropper, P., Chen, X.H., Wang, X.F., 2009. Metamorphic evolution, mineral chemistry and thermobarometry of orthogneiss hosting ultrahigh-pressure eclogites in the North Qaidam metamorphic belt, Western China. Journal of Asian Earth Sciences 35, 273–84. https://doi.org/10.1016/j.jseaes.2008.12.008.
Moritz, R.F., Ghazban, F., Singer, B.S., 2006. Eocene gold ore formation at Muteh, Sanandaj–Sirjan tectonic zone, western Iran: a result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros orogeny. Economic Geology 101, 1497–1524. https://doi.org/10.2113/gsecongeo.101.8.1497.
Morgan, K.H., Huber, H., McCall, G.J.H., Peterson, L.W., Child, R., Jones, D.R., Simonian, K., Samimi namin, M., 1979. Geological map of Kahnuj, Scale 1:100000. Geological survey and mineral exploration of Iran.
Morgan, K.H., Huber, H., McCall, G.J.H., Samimi namin, M., 1980. Geological map of Now-Dez, Scale 1:100000. Geological survey and mineral exploration of Iran.
Naseri, A., Rahgoshay, M., Bagheri, S., Monsef, I., 2022. Petrology and mineral chemistry of peridotites of the Faryab ophiolitic complex, Golashkard region-southeast of Sanandaj-Sirjan zone. Iranian Journal of Crystallography and Mineralogy. https://ijcm.ir/browse_accepted.
Perchuk, L.L., Lavrentʼeva, I.V., 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In Saxena, S.K. (Eds.), Kinetics and equilibrium in mineral reactions. Springer-verlag New York. pp. 199–239. https://link.springer.com/chapter/10.1007/978-1-4612-5587-1_7.
Proyer, A., 2003. The preservation of high-pressure rocks during exhumation: Metagranites and metapelites. Lithos 70, 183–94. https://doi.org/10.1016/S0024-4937(03)00098-7.
Sabzehei, M., Nazemzadeh Shoaei, M., Eshraghi, S.A., Roshan Ravan, J., 1994. Mohammad Abad map, 1: 100,000. Geological Survey of Iran.
Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 110, 304-310. https://doi.org/10.1007/BF00310745.
Shafaii Moghadam, H., Mosaddegh, H., Santosh, M., 2013. Geochemistry and petrogenesis of the Late Cretaceous Haji-Abad ophiolite (Outer Zagros Ophiolite Belt, Iran): implications for geodynamics of theBitlis–Zagros suture zone. Geological Journalgeol 48, 579–602. https://doi.org/10.1002/gj.2458.
Searle, M., Cox, J., 1999. Tectonic setting, origin, and obduction of the Oman ophiolite. GSA Bulletin 111(1) 104. https://doi.org/10.1130/0016-7606(1999)111<0104:TSOAOO>2.3.CO;2.
Spear, F.S., Selverstone, J., Hickmott, D., 1984. P-T Paths from garnet zoning: A new technique for deciphering tectonic processes in crystalline terranes. Geology 12(2) 87–90. https://doi.org/10.1130/0091-7613(1984)12<87:PPFGZA>2.0.CO;2.
Spear, F.S.,1993. Metamorphic phase equilibria and pressure-temprature tim pathe. Mineralogical society of America. Monograph series BookCrafters. Inc., Chelsea, Michigan, U.S.A, 799. https://www.abebooks.com.
Tracy, R., Robinson, P., Thompson, A.B., 1976. Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. American Mineralogist 61, 762-775. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/61/7-8/762/40662.
Verdel, C., Wernicke, B.P., Ramezani, J., Hassanzadeh, J., Renne, P.R., Spell, T.L., 2007. Geology and thermochronology of tertiary cordilleran-stylemetamorphic core complexes in the Saghand region of central Iran. Geological Society of America Bulletin 119, 961–977. https://doi.org/10.1130/B26102.1.
Verdel, C., Hassanzadeh, J., Wernicke, B., Stockli, A.D., 2013. The Eocene Golpaygan metamorphic core complex, Central Iran: A case history of orogen-parallel forearc rifting along an Andean-type continental margin. Geological Society American Abstracts Programs 45(7) 516. https://www.researchgate.net/profile/Charles-Verdel/publication/351686639.