Mineralogy, geochemistry of spinels in chromitites and host peridotites in Nehbandan Ophiolitic Complex, eastern Iran


1 Ph.D. graduate, Department of Geology, Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran

2 Professor, Department of Geology, Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran

3 Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran


In the Chesmeh-anjir, Bandan and Zolfaqari of Nehbandan ophiolitic complex areas, host peridotites of chromitites are of harzburgite type. These harzbogites are composed of olivine, orthopyroxene, clinopyroxene, and spinel. The spinel from Chesmeh-anjir and Bandan aera peridotites is chrome-spinel and in Zulfaqari aera of Al-chromite type, nd the spinel found in the chromitites of Chesmeh-anjir, Bandan and Zolfaqari are all of Cr-spinel type. Only a few samples of Bandan are of Al-chromite type. The chromitites of these areas are alpine type. According to the geochemical studies and determining the tectonic setting, the spinels in the harzburgites of the Zolfaqari aera show a high degree of depletion and partial melting and are of the SSZ type. Spinels in harzburgites of Bandan area have a low degree of depletion and partial melting and are N-MORB type. In the peridotites of Chesmeh-anjir aera, they show the transition state between the two. The spinels in the chromitites of Bandan aera are also SSZ type and have higher Cr. The spinels in the chromitites of Chesmeh-anjir and Zulfaqari are of N-MORB type, nevertheless, they are very similar to SSZ type. In the chromitites of Chesmeh-anjir and Zolfaqari aeras, the amount of Al is higher than in those from the chromitites of Bandan aera.


Main Subjects

Alavi Naini, M., Eftekharnezhad, J., Aghanabati, A., 1990. Gological map of Zabol, Scale 1/250000. Geological Survey of Iran.
Arai, S., Matsukage, K., 1998. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: A comparison between abyssal and alpine-type podiform chromitites. Lithos 43, 1-14. https://doi.org/10.1016/S0024-4937(98)00003-6
Arai S., Shimizu Y., Ismail S.A. and Ahmed A.H., 2006. Low-T formation of high-Cr spinel with apparently primary chemical characteristics within podiform chromitite from Rayat, northeastern Iraq. Mineralogical Magazine 70, 499-508. https://doi.org/10.1180/0026461067050353
Arai, S. and Miura, M., 2015. Podiform chromitites do form beneath midocean ridges. Lithos 232, 143–149. https://doi.org/10.1016/j.lithos.2015.06.015
Barnes, S.J., 2000. Chromite in komatiites. II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology 41, 387–409. https://doi.org/10.1093/petrology/41.3.387
Coleman, R.G., 1977. Ophiolites: New York, Springer-Verlag, P. 229.
Delavari M., Amini S., Saccani E., Beccaluva L., 2009. Geochemistry and Petrology of Mantle Peridotites from the Nehbandan OphioliticComplex, Eastern Iran. Journal of Applied Sciences 9, 2671-2687. https://doi.org/10.3923/jas.2009.2671.2687
Dilek, Y., Moores, E.M., Elthon, D., Nicolas, A., 2000. Ophiolites and oceanic crust: new insights from field studies and the ocean drilling program. Geological Society of America Special Paper 349, 139–147. https://doi.org/10.1130/SPE349
Droop, G.T.R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stochiometric criteria, Mineralogical Magazine 51, 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
Franz, L., Wirth, R., 2000. Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismark Archipel- ago/Papua New Guinea): evidence for the thermal and tectonic evolution of the oceanic lithosphere. Contributions to Mineralogy and Petrology 140, 283-295. https://doi.org/10.1007/s004100000188
Griffis, R. j., Johns, J. W., Willoughby, N.O., Camp, V.E., 1989. Geological map of Bandan. Scale 1/100000. Geological Survey of Iran.
Hellebrand, E., Snow, J.E., Dick, H.J.B., Hofmann, A.W., 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677-681. https://doi.org/10.1038/35070546
Hirose, K., Kawamoto, T., 1995. Hydrous partial melting of lherzolite at 1 GPA: the effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters 133, 463–473. https://doi.org/10.1016/0012-821X(95)00096-U
Huang, X., Li, J., Kusky, T.M., Chen, Z., 2004. Microstructures of the 2.50 Ga podiform Chromite, North China craton and implicatins for the deformation and rheology of the Archean oceanic lithospheric mantle. Developments in Precambrian Geology 13, 321-337. https://doi.org/10.1016/S0166-2635(04)13010-7
Kapsiotis, A., 2009. PGM and Chromite Mineralization Associated with the Petrogenesis of the Vourinos and Pindos Ophiolite Complexes, Northwestern Greece. Ph.D. thesis. University of Patras. Patras.
Karimzadeh, H., Rahgoshay, M., Monsef, I., 2020. Mineralogy, Geochemistry, and Petrogenesis of Kalateh-Shahpouri, Qadam-Gah and Nasfandeh Kuh peridotites, Nehbandan Ophiolitic Complex, East of Iran. Journal of Economic Geology 12, 157-176. (In Persian with English abstract) https://doi.org/10.22067/econg. v12i2.76889
Karimzadeh, H., 2021. Mineralogy, geochemistry and petrogenesis of Nehbandan Ophiolites Complex (Eastern Iran). Ph.D. thesis. Shahid Beheshti university. Tehran.
Karimzadeh, H., Rahgoshay, M., Monsef, I., 2023. Mineralogy and geochemistry of clinopyroxene in peridotites of Nehbandan ophiolitic complex, eastern Iran. Geosciences Journal 33, 135-154. (In Persian with extended English abstract) https://doi.org/10.22071/gsj.2023.360594.2030
Le Bas, M.J., 2000. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. Journal of Petrology 41, 1467–1470. https://doi.org/10.1093/petrology/41.10.1467
Leblanc, M., Ceuleneer, G., 1992. Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite. Lithos 21, 231-257. https://doi.org/10.1016/0024-4937(91)90002-3
Matsumoto, I., Arai, S., 2001. Morphological and chemical variations of chromian spinel in dunite-harzburgite complexes from the Sangun zone (SW Japan): implications for mantle/melt reaction and chromitite formation processes. Mineralogy and Petrology 73, 305–323. https://doi.org/10.1007/s007100170004
Matveev, S., Ballhaus, C., 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters 203, 235–243. https://doi.org/10.1016/S0012-821X(02)00860-9
Miyashiro, A., 1973. The Troodos complex was probable formed in an island arc. Earth and Planetary Science Letters 19, 218-281. https://doi.org/10.1016/0012-821X(73)90118-0
Monsef, I., Rahgoshay, M., Pirouz, M., Chiaradia, M., Michel Grégoire, M., Ceuleneer, G., 2019. The Eastern Makran Ophiolite (SE Iran): evidence for a Late Cretaceous fore-arc oceanic crust. International Geology Review 61, 1313-1339. https://doi.org/10.1080/00206814.2018.1507764
Pearce, J.A., Lippard, S.J., Roberts, S., 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications 16, 77–94. https://doi.org/10.1144/GSL.SP.1984.016.01.06
Prichard, H.M., Alabaster, T., Harris, N.B.W., Neary, C.R., 1993. Magmatic Processes and Plate Tectonics. Geological Society Special Publication 76, 257– 272. https://doi.org/10.1144/GSL.SP.1993.076.01.28
Proenza, J.A., Zaccarini, F., Escayola, M., Cábana, C., Schalamuk, A., Garuti, G., 2008. Composition and textures of chromite and platinum-group minerals in chromitites of the western ophiolitic belt from Pampean Ranges of Córdoba, Argentina. Ore Geology Reviews 33, 32-48. https://doi.org/10.1016/j.oregeorev.2006.05.009
Rajabzadeh, M.A., Al Sadi, F., 2015. Sulfide mineralization in ultramafic rocks of the Faryab ophiolite complex, southern Kerman. Journal of Economic Geology 7, 259–276. (In Persian with English abstract) https://doi.org/10.22067/econg. v7i2.35550
Rollinson, H., 2005. Chromite in the mantle section of the Oman ophiolite: A new genetic model. The Island Arc 14, 542-550. https://doi.org/10.1111/j.1440-1738.2005.00482.x
Saccani E., Delavari M., Beccaluva L., Amini S., 2010. Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos 117, 209-228. https://doi.org/10.1016/j.lithos.2010.02.016
Stocklin, J., 1977. Structural correlation of the Alpine ranges between Iran and Central Asia. Mémoires Société Géologique de France 8, 333–353.
Streckeisen, A., 1979. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: recommendation and suggestion of the IUGS, sub-commission on the systematic of Igneous Rock. Geology 7, 331-335. https://doi.org/10.1130/0091-7613(1979)72.0.CO;2
Tirrul, R., Bell, I.R., Griffis, R.J., Camp, V.E., 1983. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin 94, 134–150. https://doi.org/10.1130/0016-7606(1983)942.0.CO;2
Tirrul, R., Johns, J.W., Willoughby, N.O., Camp, V.E., Griffis, R.j., Bell, I.R., Meixner, H.M., 1989. Geological map of Nehbandan. Scale 1/100000. Geological Survey of Iran.
Warren, J.M., 2016. Global variations in abyssal peridotite compositions. Lithos 248, 193-219. https://doi.org/10.1016/j.lithos.2015.12.023
Whitney, D.L., Evans, B.W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist 95, 185-187. https://dx.doi.org/10.2138/am.2010.3371
Zarrinkoub, M.H., Pang, K.N., Chung, S. L., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Lee, H.Y., 2012. Zircon U–Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran. Lithos 154, 392–405. https://doi.org/10.1016/j.lithos.2012.08.007
Zhou M.F, Robinson P.T., 1994. High-chromium and high-aluminum podiform chromitites, western China: Relationship to partial melting and melt/rock interaction in the upper mantle. International Geology Review 36, 678–686. https://doi.org/10.1080/00206819409465481