مطالعه کانی‌شناسی، زمین شیمی و زمین فیزیک در محدوده اکتشافی آهن-منگنز بندچرک، پهنه انارک، ایران مرکزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد زمین‌شناسی اقتصادی، گروه زمین‌شناسی، دانشگاه اصفهان، ایران

2 دانشیار، گروه زمین‌شناسی، دانشگاه اصفهان، ایران

3 دانشیار، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران

4 استادیار، دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

محدوده اکتشافی بندچرک در مرز باختری پهنه ایران مرکزی، در شمال استان اصفهان قرار دارد. رخنمون‌های سنگی در این محدوده مجموعه دگرگونه‌های پالئوزوئیک-مزوزوئیک انارک، توالی رسوبی کرتاسه پیشین، کنگلومرای پالئوسن و سنگهای آتشفشانی ائوسن هستند. توالی میزبان کانه‌زایی از پایین به بالا شامل دو واحد سنگی است: 1) مجموعه دگرگونه پالئوزوئیک-مزوزوئیک و 2) توالی کرتاسه زیرین. بافت کانه‌زایی بیشتر از نوع رگه-رگچه‌ای، جانشینی، برشی، نواری، خالدار و بقایای میکروبی (تمشکی، کروی و سوزنی) است. کانه‌های اصلی بترتیب هماتیت، گوتیت، پیرولوسیت، براونیت، پسیلوملان و کمتر هاسمانیت، تودوروکیت و مانگانیت همراه با گالن، پیریت و کالکوپیریت می‌باشد. کانی‌های باطله بیشتر دولومیت، کوارتز، کلسیت، باریت و سیلیس بی‌شکل هستند. بررسی‌های مغناطیس‌سنجی یک ناهنجاری مغناطیسی بزرگ (تا 2900 نانوتسلا) را نشان می‌دهد که منطبق بر موقعیت توده متاگابرویی غنی از مگنتیت در خاور منطقه مطالعاتی است. تفسیر مغناطیس‌سنجی با استفاده از شواهد زمین‌شناسی به یک تاقدیس نامتقارن اشاره دارد و رخداد هماتیت در بالهای آن دیده شده است.نمونه‌های معدنی مقادیر بالایی از Ba، Pb، Si و Sr و مقادیر پایینی از Co، Ni، P و Ti دارند. نتایج ما نشان دادند که کانی‌زایی به ترتیب در طی سه فرایند دگرگونی، گرمابی و هوازدگی تشکیل می‌شود. بر پایه مطالعات کانی‌شناسی، بافت و تغییرات زمین‌شیمیایی، کانه‌زایی اقتصادی بندچرک شباهت زیادی با یک سامانه فعال گرمابی دارد که گردش محلول‌ها درون مجموعه دگرگونه انارک شرایط را برای تشکیل کانسارسازی فلزات آهن و منگنز فراهم کرده باشد. اگر چه بخشی از کانه‌زایی نتیجه شستشوی آهن و منگنز توسط آبهای جوی، در طی بالاآمدگی و هوازدگی تشکیل شده است.

کلیدواژه‌ها

موضوعات


 
Ahankoub, M., Ayati, F., Mohamadi, A., 2021. Geology and geochemistry of the Shorab Kabir Mn mineralization North Shahrekord, Sanandaj-Sirjan. Advanced Applied Geology 12(3), 489-509. https://doi.org/ 10.22055/AAG.2021.36360.2193.
Alt, J.C., 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Marine Geology 81, 227–239. https://doi.org/10.1016/0025-3227(88)90029-1.
Bagheri, S., Stampfli, M., 2008. The Anarak, Jandaq and posht-e-badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451, 123-155. https://doi.org/10.1016/j.tecto.2007.11.047.
Balini, M., Nicora, A., Berra, F., Garzanti, E., Levera, M., Mattei, M., Muttoni, G., Zanchi, A., Bollati, I., Larghi, C., Zanchetta, S., 2009. The Triassic stratigraphic succession of Nakhlak (Central Iran), a record from an active margin. Geological Society, London, Special Publications 312(1), 287-321. https://doi.org/10.1144/SP312.1.4.
Barati, M., Ostadhosseini, A., Alaei, R., 2019. Evaluation of iron mineralization in Chahpalang index of Anarak, Central Iran. Iranian Journal of Petrology 10(2), 121-148. https://doi.10.22108/IJP.2019.116611.1133.
Barghi, B., Calagari, A.A., Zarrinkoub, M.H., Simmonds, V., 2017a. Geology and geochemistry of manganese-bearing veins of Beshgaz inNE of Birjand, Southern Khorasan. Iranian Journal of Crystallography and Mineralogy 25(3), 487-500. https://doi.org/10.18869/acadpub.ijcm.25.3.487.
Barghi, B., Calagari, A.A., Zarrinkoub, M.H., Simmonds, V., 2017b. Geological and geochemical investigation of three ophiolite-hosted manganese prospects, southeast of Birjand, south khorasan, east of Iran. Resource Geology 67(4), 414-425. https://doi.org/10.1111/rge.12139.
Barghi, B., Calagari, A.A., Zarrinkoub, M.H., Simmonds, V., 2018. Geologic and geochemical investigation on the Mn veins in Jonub-E Sehchangi, SW Birjand, Southern Khorasan province (east Iran). Geosciences 106, 3-12. https://doi.org/10.22071/gsj.2018.58346.
Bohu, T., Akob, D.M., Abratis, M., Lazar, C.S., Küsel, K., 2016. Biological low-pH Mn (II) oxidation in a manganese deposit influenced by metal-rich groundwater. Applied and environmental microbiology 82(10), 3009-3021. https://doi.org/10.1128/AEM.03844-15.
Bonatti, E., Kraemer, T., Rydel, H., 1972. Classification and genesis of submarine iron-manganese deposits in Horn, D.R. (Ed.) ferromanganese deposits on the ocean floor. Natural Science 57, 149-166. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB226001.xhtml.
Boyd, T., Scott, S.D., 1999. Two-XRD-line ferrihydrite and Fe-Si-Mn oxyhydroxide mineralization from Franklin Seamount, western Woodlark Basin, Papua New Guinea. Canadian Mineralogist 37, 973-990. https://doi.org/10.2113/gscanmin.38.5.1075.
Boyton, W.V., 1984. Cosmochemistry of the rare earth studies: meteorite studies. Rare Earth Element Geochemistry 2, 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3.
Brunet, M.F., Wilmsen, M., Granath, J.W., 2009. South Caspian to Central Iran Basins: The Geological Society Special Publications. London. P. 367. https://doi.org/10.1144/SP312.1.
Brusnitsyn, A.I., Starikova, E.V., Zhukov, I.G., 2017. Mineralogy of low grade metamorphosed manganese sediments of the Urals: Petrological and geological applications. Ore Geology Reviews 85, 140-152. https://doi.org/10.1016/j.oregeorev.2016.07.004.
Buchs, D.M., Bagheri, S., Martin, L., Hermann, J., Arculus, R., 2013. Paleozoic to Triassic ocean opening and closure preserved in Central Iran: constraints from the geochemistry of meta-igneous rocks of the Anarak area. Lithos 172, 267-287. https://doi.org/10.1016/j.lithos.2013.02.009.
Buchs, N., Epard, N., Luc, J., 2019. Geology of the eastern part of the Tso morari nappe, the Nidor ophiolite and the surrounding tectonic units (NW Himalaya, India). Journal of map 15, 38-48. https://doi.org/10.1080/17445647.2018.1541196.
Callender, E., Bowser, C.J., 1976. Freshwater ferromanganese deposits. In: Wolf, K.H. (Ed.), Handbook of Strata-Bound and Stratiform ore deposits, Elsevier, Amsterdam. 341–394.
Canfield, D.E., 1998. A new model for Proterozoic ocean chemistry: Nature 396, 450–453. https://doi.org/10.1038/24839.
Chavagnac, V., German, C.R., Milton, J.A., Palmer, M.R., 2005. Sources of REE in sediment cores from the Rainbow vent site (36 14′ N, MAR). Chemical geology 216(3-4), 329-352. https://doi.org/10.1016/j.chemgeo.2004.11.015.
Choi, J., Harya, Y., 1992. Geochemistry and depositional environment of Mn oxide deposits in the Tokoro belt, northeastern Hokaido, Japan. Economic Geology 87, 1265-1274. https://doi.org/10.2113/gsecongeo.87.5.1265.
Crerar, D., 1982. Manganiferous cherts of a formations Assemblage I: general geology, ancient and modern analogues and implications for hydrothermal convection at oceanic spreading centers. Economic Geology 77, 519-540. https://doi.org/10.2113/gsecongeo.77.3.519.
Dekov, V.M., Savelli, C., 2004. Hydrothermal activity in the SE Tyrrhenian Sea: an overview of 30 years of research. marine geology 204, 161-185. https://doi.org/10.1016/S0025-3227(03)00355-4.
Dentith, M., Mudge, S., 2014. Geophysics for the Mineral Exploration Geoscientist. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139024358.
Du, Q., Hui, Yi, H., Hui, B., Li, S., Xia, G., Yang, W., Wu, X., 2013. Recognition, genesis and evolution of manganese ore deposits in southeastern China. Ore geology reviews 55, 99-109. https://doi.org/10.1016/j.oregeorev.2013.05.001.
Ehya, F., Marbouti, Z., 2021. The Shamsabad Fe-Mn deposit, Markazi province, Iran: LA-ICP-MS and sulfur isotopic geochemistry. Ore Geology Reviews 139, 104-555. https://doi.org/10.1016/j.oregeorev.2021.104555.
Fernandez, A., Moro, M.C., 1998. Origin and depositional environment of Ordovician stratiform iron mineralization from Zamora (NW Iberian Peninsula). Mineralium Deposita 33(6), 606-619. https://doi.org/10.1007/s001260050176.
Fleischer, M., Richmond, W.E., 1943. The manganese oxide minerals, a preliminary report. Economic Geology 38(4), 269-286. https://doi.org/10.2113/gsecongeo.38.4.269.
Fong, C., Kennedy, BJ., 1994. A powder neutron diffraction of LiMn2O4. Zeitschrift fur Kristallographie-Crystalline Materials 209, 7-28, https://doi.org/10.1524.zkri.1994.209.12.941.
German, C.R., Von Damm, K.L., 2006. Hydrothermal processes. Treatise on geochemistry 6, 181-222.
Glasby, G.P., 2006. Manganese: predominant role of nodules and crusts. In: Schulz, H.D., Zabel, M., (Eds.), Marine Geochemistry. Springer. 12, pp. 371–427. https://doi.org/10.1007/3-540-32144-6_11.
Gultekin, A.H., Balci, N., 2018. Geochemical characteristics of sedimentary manganese deposit of Binkılıç, Trache Basin, Turkey. Journal of Geology and Geophysics 7(3), 1-13. https://doi.org/ 0.4172/2381-8719.1000336.
Hashempour, S.S., Maghfouri, S., Rastad, E., 2022. Stratigraphic position, mineralogy and distribution of the main elements in manganese oxide minerals of Mohammadabad deposit in the Late Cretaceous volcano-sedimentary sequence, southwest of Sabzevar. 39th National congress and 4th international congress of earth sciences, Geological survey of Iran, Tehran. https://doi.org/10.22055/aag.2022.40216.2284.
Hashempour, S.S., Maghfouri, S., Rastad, E., Gonzalez, F.J., 2023. Mohammadabad Manganese deposit, southwest Sabzevar basin, Iran: Evidence of sea-floor exhalation and geochemical studies in the late Cretaceous volcano-sedimentary sequence. Journal of Geochemical Exploration 245, 107-127. https://doi.org/10.1016/j.gexplo.2022.107127.
Hayashi, K.I., Fujisawa, H., Holland, H.D., Ohmoto, H., 1997. Geochemistry of∼ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et cosmochimica acta 61(19), 4115-4137. https://doi.org/10.1016/S0016-7037(97)00214-7.
Hein, J.R., Schulz, M.S., Gein, L.M., 1992. Central Pacific cobalt-rich ferromanganese crusts: Historical perspective and regional variability, In Geology and offshore mineral resources of the Central Pacific Basin.  A chapter of Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, Springer, New York, NY. 261-283.
Hein, JR., Schulz, MS., Dunham, RE., Stern, RJ., Bloomer, SH., 2008. Diffuse flow hydrothermal manganese mineralization along active mariana and southern lzu-Bonin arc system, western pacific. Geophysical Research 113. https://doi.org/10.1029/2007JB005432.
Hein, J.R., Koschinsky, A., 2014. Deep-ocean ferromanganese crusts and nodules. In: Holland, H.D., Turekian K.K., (Eds.), Treatise on geochemistry. Oxford: Elsevier. pp. 273-291. https://doi.org/10.1016/B978-0-08-095975-7.01111-6.
Hewett, D.F., Flescher, M., 1960. Deposits of the manganese oxide, Economic Geology 55, 1-55. https://doi.org/10.2113/gsecongeo.55.1.1.
Hodkinson, A.R., Cronan, D.S., 1994. Element supply to surface manganese nodules along the Aitutaki-Jarvis transect, south pacific, Geological society 151, 291-401. https://doi.org/10.1144/gsjgs.151.2.0391.
Hongo, Y., Nozaki, Y., 2001. Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya Ridge vent field, Okinawa Trough. Geochemical 35, 347-354. https://doi.org/10.2343/geochemj.35.347.
Hou, B., 1994. Primary braunite in Triassic sedimentary manganese deposits of Dounan, Yunnan, China. Ore Geology Reviews 9(3), 219-239. https://doi.org/10.1016/0169-1368(94)90007-8.
Imamalipour, A., 2010, Mineralogy and geochemistry of Mn-Fe deposits associated with ophiolitic sediments in north of Chalderan, NW Iran. Iranian Journal of Crystallography and Mineralogy 18(1), 3-14.
Johnson, J.E., Webb, S.M., Ma, C., Fischer, W.W., 2016. Manganese mineralogy and diagenesis in the sedimentary rock record. Geochim 173, 210-231. https://doi.org/10.1016/j.gca.2015.10.027.
Kargaranbafghi, F., Neubauer, F., Genser, J., Faghih, A., Kusky, T., 2012. Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation. Tectonophysics 564, 83-100. https://doi.org/10.1016/j.tecto.2012.06.017.
Lensch, G., Davoudzadeh, M., 1982. Ophiolites in Iran, Geology 212, 306-320. https://doi.org/10.1127/njgpm/1982/1982/306.
Maghfouri, S., Rastad. E., Movahednia, M., Lentz, D., Hosseinzadeh, M.R., Lin Ye, Mousivand, F., 2019. Metallogeny and temporal-spatial distribution of manganese mineralizations in Iran: implication for future exploration, Ore mineral geology review115, 1-42. https://doi.org/10.1016/j.oregeorev.2019.103026.
Mahmoudi, S., Geravandi, P., Ghasemi Siani, M., Gholizadeh, K., 2020. Mineralogy, geochemistry, and genesis of Mn mineralization associated with the Noorabad Delfan radiolarites, Northwestern Lorestan. Journal of Economic Geology 11(4), 53-54. https://doi.org/10.22067/econg.v11i4.67074.
Marbouti, Z., Ehya, F., Rostami Paydar, G., Maleki Kheymehsari, S., 2021. Geochemistry and the origin of the Shamsabad manganese-bearing iron deposit, Markazi Province. Advanced Applied Geology, 11(3), 536-556. https://doi.org/ 10.22055/AAG.2020.34519.2146.
Maynard, J.B., 2010. The Chemistry of Manganese Ores through Time: A Signal of Increasing Diversity of Earth-Surface Environments. Economic Geology 105, 535-552. https://doi.org/10.2113/ gsecongeo.105.3.535.
Morgan, J.J., 2005. Kinetics of reaction between O2 and Mn (II) species in aqueous solutions. Geochimica et Cosmochimica Acta 69(1), 35-48. https://doi.org/10.1016/j.gca.2004.06.013.
Morgan, B., Lahav, O., 2007. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere 68, 2080-2084. https://doi.org/10.1016/j.chemosphere.2007.02.015.
Mousivand, F., Bagherzadeh, Z., Sadeghian, M., 2015. Tectonic setting of the Bande Qichi volcanic-exhalative manganese-celestine deposit, South of Shahrood, North East Iran. Second International Workshop on Tethyan Orogenesis and Metallogeny in Asia, Wuhan, China.
Nabatian, Gh., Rastad, E., Nubauer, F., Honarmand, M., Ghadiri, M., 2015. Iron and Fe-Mn mineralization in Iran: implications for Tethyan metallogeny, Earth sciences 62, 211-241. https://doi.org/10.1080/08120099. 2015.1002001.
Naderi, A., Nabatian, G., Honarmand, M., Kouhestani, H., 2020. Geology and genesis of Halab Mn deposit, SW Zanjan. Scientific Quarterly Journal of Geosciences 29(115), 207-218. https://doi.org/10.22071/gsj.2018.89091.1150.
Nicholson, K., 1992. Contrasting mineralogical- geochemical signature of manganese oxide, guides to metallogenesis, Ecinimic Geology 87, 1253-1264. https://doi.org/10.2113/gsecongeo.87.5.1253.
Nicholson, K., Nayak, V.K., Nanda, J.K., 1997. Manganese ores of the Ghoriajhor-Monmunda area, sundergarh district, Orissa, India: geochemical evidene for a mixed Mn source. Geological society special publications119, 117-121. https://doi.org/10.1144/GSL.SP.1997.119.01.08.
Oksuz, N., 2011. Geochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit, Turkey. Journal of Rare Earths 29(3), 287-296. https://doi.org/10.1016/S1002-0721(10)60446-2.
Pirnia, T., Saccani, E., Torabi, G., Chiari, M., Gorican, S., Barbero, E., 2020. Cretaceous tectonic evolution of the Neo-Tethys in Central Iran: Evidence from petrology and age of the Nain-Ashin ophiolitic basalts. Geoscience Frontiers 11(1), 57-81. https://doi.org/10.1016/j.gsf.2019.02.008.
Rahmatian, M., Lotfi, M., Ghaderi, M., 2019. Geochemistry of the Joun Abad manganese deposit, north Khash, Sistan and Baluchestan province. Journal of Economic Geology, 11(1), 81-103. https://doi.org/10.22067/econg.v11i1.52594.
Rajabzadeh, M.A., Haddad, F., Polgári, M., Fintor, K., Walter, H., Molnár, Z., Gyollai, I., 2017. Investigation on the role of microorganisms in manganese mineralization from Abadeh-Tashk area, Fars Province, southwestern Iran by using petrographic and geochemical data. Ore Geology Reviews 80, 229-249. https://doi.org/10.1016/j.oregeorev.2016.06.035.
Shahin, M., Ahmadi-Rouhani, R., Alaminia, Z., 2021. Comparison of Landsat-8, ASTER and Sentinel-2 satellite data for enhancing the iron-bearing minerals: a case study from northeast Ardestan, Isfahan. 28th National symposium of crystallography and mineralogy of Iran, Ferdowsi University of Mashhad, Iran.
Shahin, M., 2022. Gology, geochemistry and genesis of Fe-Cu mineralization in the Band-e-Cherk district, northeast Ardestan. M.Sc. Thesis, Department of Geology, University of Isfahan, Iran.
Sharkovski, M., Filichev, E., Selivanov, E., 1981. Geological map of Kuh-e-Dom, scale 1:100000. Geological Survey of Iran, Tehran, Iran.
Sharkovski, M., Susov, M., Krivyakin, B., 1984. Geology of the Anarak area (central Iran), explanatory text of the Anarak quadrangle map, Geological surrey 250, 170-197.
Shayanfar, M., Ghorashi, M., Ahmadi, S.J., Saeedi, A., Shahidi, AR., 2016. Geology and structural pattern of Anarak-Talmessi sedimentary basin, Geosciences 98, 315-320. https://doi.org/10.22071/gsj.2016.41231.
Sjoberg, S., Stairs, Yu.C., Allard, B., Hallberg, R., Henriksson, S., Astrom, M., Duparaz, C., 2021. Microbe-mediated Mn oxidation a proposed model of mineral formation, Mineral 10, 1146-1158. https://doi.org/10.3390/min11101146.
Slack, J.F., Grenne, T., Bekker, A., Rouxel, O.J., Lindberg, P.A., 2007. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafl oor-hydrothermal sulfi de deposits, central Arizona, USA: Earth and Planetary Science Letters 255, 243-256. https://doi.org/10.1016/j.epsl.2006.12.018.
Slack, J.F., Grenne, T., Bekker, A., 2009. Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater. Geosphere 5(3), 302-314. https://doi.org/10.1130/GES00220.1.
Stoffers, P., Glasby, G.P., Stuben, D., Renner, R.M., Pierre, T.G., Webb, J., Cardile, C.M., 1993. Comparative mineralogy and geochemistry of hydrothermal iron-rich crusts from the Pitcairn, Teahitia-mehetia, and Macdonald hot spot areas of the SW pacific. Marine Georesources & Geotechnology 11, 45-86. https://doi.org/10.1080/10641199309379905.
Sugisaki, R., 1984. Relation between chemical composition and sedimentation rate of Pacific ocean-floor sediments deposited since the middle Cretaceous: basic evidence for chemical constraints on depositional environments of ancient sediments. The Journal of Geology 92, 235-259. https://doi.org/10.1086/628858.
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of ocean basalt: implications for mantle composition and processes. Geological society 42, 331-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19.
Toth, J.R., 1980. Deposition of submarine crusts rich in manganese and iron, geological society of America bulletin 91, 44-54. https://doi.org/10.1130/0016-7606(1980)91%3C44:DOSCRI%3E2.0.CO;2.
Vasilatos, C., Economou-Eliopoulos, M., 2018. Fossilized Bacteria in Fe-Mn-Mineralization: Evidence from the Legrena Valley, W. Lavrion Mine (Greece). Minerals 8(3), 107. https://doi.org/10.3390/min8030107.
Von Damm, K.l., Beard, B.L., Jonhnson, C.M., Poulson, R.L., 2003. Iron isotope constraints on Fe cycling and mass balance in oxygenated earth oceans. Geology 31(7), 629-632. https://doi.org/10.1130/0091-7613(2003)031%3C0629:IICOFC%3E2.0.CO;2.
Whitney, D., Evans, B., 2010, Abbreviations for names of rock forming minerals, American mineralogist 95. 185-187.
      Wilmsen, M., Berensmeier, M., Fursich, FT., Majidifard, MR., Schlagintweit, F., 2018. A late cretaceous epiric carbonate platform: the Haftoman Formation of Central Iran, Springer 64, 1-24. https://doi.org/10.1007/s10347-018-0523-6.
Wilmsen, M., Berensmeier, M., Fursich, F.T., Schlagintweit, F., Hairapetian, V., Pashazadeh, B., Majidifard, M.R., 2020. Mid-Cretaceous biostratigraphy (ammonites, inoceramid bivalves and foraminifers) at the eastern margin of the Anarak Metamorphic Complex (Central Iran). Cretaceous Research 110, 104411.
Xu, Z., Wu, C., Zhang, Z., Xu, J., Li, X. and Jin, Z., 2021. Separation of Fe from Mn in the Cryogenian Sedimentary Mn Deposit, South China: Insights from Ore Mineral Chemistry and S Isotopes from the Dawu Deposit. Minerals 11, 446.https://doi.org/10.3390/min11050446.
Zanchi, A., Zanchetta, S., Garzanti, E., Balini, M., Berra, F., Mattei, M., Muttoni, G., 2009. The Cimmerian evolution of the Nakhlak–Anarak area, Central Iran, and its bearing for the reconstruction of the history of the Eurasian margin. Geological Society, London. Special Publications 312(1), 261-286. https://doi.org/10.1144/SP312.13.
Zanchi, A., Barbarano, M., Agliardi, F., 2015. Inherited and active tectonic controls on the Piz Dora DSGSD (Val Mustair Switzerland). Society and Territory 2, 605-608. https://doi.org/10.1007/978-3-319-09057-3_100.
Zarasvandi, A., Rezaei, M., Sadeghi, M., Pourkaseb, H., Sepahvand, M., 2016. Rare-earth element distribution and genesis of manganese ores associated with Tethyan ophiolites, Iran: A review. Mineralogical Magazine 80(1), 127-142. https://doi.org/10.1180/minmag.2016.080.054.
Zarasvandi, A., Rezaei, M., Raith, J., Pourkaseb, H., Asadi, S., 2018. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper system, Urumieh-Dokhtar magmatic arc, Geochemicaa 223, 36-59. https://doi.org/10.1016/j.gca.2017.11.012.
Zarrinkoub, M.H., Kalagari, A., Barghi, B., 2009. Mineralogy and genesis of Kamar Talar Mn in East of Birjand, Southern Khorasan, Iran. Iranian Journal of Crystallography and Mineralogy 17(2), 309-318. https://ijcm.ir/article-1-591-fa.html.
Zeng, Z., Ouyang, H., Yin, X., Chen, S., Wang, X., Wu, L., 2012. Formation of Fe–Si–Mn oxy/ hydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: Mineralogical and geochemical evidence. Journal of Asian Earth Sciences 60, 130-146. https://doi.org/10.1016/j.jseaes.2012.08.009.
Zeng, Z., Ouyang, H., Yin, X., Chen, S., Wang, X., Wu, L., 2012. Formation of Fe-Si-Mn oxyhydroxide at the Paacmanus hydrothermal field, eastern manus basin: mineralogical and geochemical evidence, Asian earth sciences 60, 130-146. https://doi.org/10.1016/j.jseaes.2012.08.009.