تخمین کارآمد پتانسیل هیدروکربنی باقیمانده با حذف اثرات نامطلوب تغییرات سنگ‌شناسی بر روند آموزش سیستم استنتاج عصبی – فازی تطبیقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی نفت و گاز، دانشگاه صنعتی سهند، تبریز

2 گروه زمین شناسی نفت و حوضه های رسوبی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز

چکیده

با رونق اکتشاف و توسعه منابع هیدروکربنی نامتعارف، تخمین دقیق فاکتورهای سنگ منشاء نظیر پتانسیل باقیمانده هیدروکربنی (S2) از طریق نگاره‌های چاه بیش از پیش اهمیت پیدا کرده است. مانند ویژگی‌های مواد آلی، تغییرات سنگ‌شناسی در داخل یک توالی منشاء احتمالی نیز بر پاسخ نگاره‌های چاه موثرند. این امکان وجود دارد که تکنیک‌های هوش مصنوعی این پاسخ‌های نگاره‌ای ناشی از سنگ‌شناسی را بعنوان نشانه‌ای از تغییر در میزان و ویژگی‌های مواد آلی تفسیر نمایند، که این مهم موجبات کاهش کارایی آنها را مهیا می‌کند. در مطالعه حاضر، روشی جدید تحت عنوان روش مبتنی بر سنگ‌شناسی ارائه شده است که اساس آن بر مدل‌سازی رابطه بین نگاره‌ها و پارامتر S2 برای هر کدام از انواع سنگ‌شناسی از طریق سیستم استنتاج عصبی–فازی تطبیقی استوار است. کارایی روش پیشنهادی با روش‌های ANFIS و هیبریدی که فرآیند آموزش آنها با استفاده از داده‌های واجد سنگ‌شناسی مختلف انجام شده است، مورد مقایسه قرار گرفت. نتایج نشان داد که روش مبتنی بر سنگ‌شناسی در زمینه حذف اثرات نامطلوب تغییرات سنگ‌شناسی بر روند آموزش مدل ANFIS موفق بوده که حاصل آن، تخمین بسیار دقیقتر مقادیر S2 می‌باشد. ازمیان روش‌های معمول، ترکیب الگوریتم بهینه‌سازی ذرات با روش ANFIS کارایی بالاتری را نشان داد. لیکن، روش هیبریدی مذکور به اندازه روش مبتنی بر سنگ‌شناسی کارآمد نمی‌باشد. کاربردی‌بودن روش پیشنهادی با اجرای آن بر سازند پابده در یکی از چاه‌های جنوب غرب ایران تایید شد. در نهایت، پیشنهاد می‌شود از روش مبتنی بر سنگ‌شناسی جهت تخمین دیگر فاکتورهای ژئوشیمیایی و همچنین پارامترهای پتروفیزیکی از طریق نگاره‌های چاه، بهره گرفته شود.

کلیدواژه‌ها


Abraham, A., 2005. Adaptation of fuzzy inference system using neural learning. In: Nedjah, N., Macedo Mourelle, L. (Eds.), Fuzzy Systems Engineering. Studies in Fuzziness and Soft Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11339366_3.
Alizadeh, B., Maaroofi, K., Heidarifard, M., 2012a. Validation and comparison of artificial neural network (ANN) and ΔLogR techniques in evaluating organic matter content of source rocks: Case study from Pabdeh Formation, Marun oilfield. Journal of Stratigraphy and Sedimentology Researches 28, 1-18. https://doi.org/20.1001.1.20087888.1391.28.3.1.8.
Alizadeh, B., Maaroofi, K., Heidarifard, M.H., 2013. Evaluation of Organic Matter Content Achieved from Artificial Neural Network in a Sequence Stratigraphic Framework: A Case Study from Pabdeh Formation of Marun Oilfield. Advanced Applied Geology 3, 21-30.
Alizadeh, B., Maroufi, K., Fajrak, M., 2018a. Hydrocarbon reserves of Gachsaran oilfield, SW Iran: Geochemical characteristics and origin. Marine and Petroleum Geology 92, 308-318. https://doi.org/10.10 16/j.mar petgeo.2017.08.040.
Alizadeh, B., Maroufi, K., Fajrak, M., 2018b. Oil-oil correlation, geochemical characteristics, and origin of hydrocarbons from Mansourabad oilfield, SW Iran. Journal of African Earth Sciences 147, 383-392. https://doi.org/10.1016/j.jafrearsci.2018.06.008.
Alizadeh, B., Maroufi, K., Heidarifard, M.H., 2018c. Estimating source rock parameters using wireline data: an example from Dezful Embayment, South West of Iran. Journal of Petroleum Science and Engineering 167, 857-868. https://doi.org/10.1016/j.petrol.2017.12.021.
Alizadeh, B., Najjari, S., Kadkhodaie-Ilkhchi, A., 2012b. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran. Computers & Geosciences 45, 261-269. https://doi.org/10.1016/j.cageo .2011.11.024.
Alizadeh, B., Seyedali, S.R., Zahmatkesh, I., Sarafdokht, H., 2022. Applying artificial intelligent and empirical techniques for prediction of total organic carbon content from wireline data: A case study from Pabdeh Formation in Mansuri oilfield, SW Iran. Petroleum Science and Technology 40, 1-17. https://doi.org/10 .1080/10916466.2021.1945626.
Beers, R.F., 1945. Radioactivity and organic content of some Paleozoic shales. AAPG Bulletin 29, 1-22. https://doi.org/10.1306/10.1306/3D933700-16B1-11D7-8645000102C1865D.
Behar, F., Beaumont, V., Penteado, H.L.D.B., 2001. Rock-Eval 6 technology: performances and developments. Oil & Gas Science and Technology 56, 111-134. https://doi.org/10.2516/ogst:2001013.
Bordenave, M.L., Burwood, R., 1990. Source rock distribution and maturation in the Zagros orogenic belt: provenance of the Asmari and Bangestan reservoir oil accumulations. Organic Geochemistry 16, 369-387. https://doi.org/10.1016/0146-6380(90)90055-5.
Bordenave, M.L., Burwood, R., 1995. The Albian Kazhdumi Formation of the Dezful Embayment, Iran: one of the most efficient petroleum generating systems. In: Katz, B.J. (Ed.), Petroleum Source Rocks. Springer, pp. 183-207. https://doi.org/10.1007/978-3-642-78911-3-11.
Bordenave, M.L., Hegre, J.A., 2010. Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems. Geological Society, London, Special Publications 330, 291-353. https://doi.org/10.1144/SP330.14.
Chamkalani, A., Zendehboudi, S., Bahadori, A., Kharrat, R., Chamkalani, R., James, L., Chatzis, I., 2014. Integration of LSSVM technique with PSO to determine asphaltene deposition. Journal of Petroleum Science and Engineering 124, 243-253. https://doi.org/10.1016/j.petrol.2014.10.001.
Esrafili‐Dizaji, B., Rahimpour‐Bonab, H., 2019. Carbonate reservoir rocks at giant oil and gas fields in SW Iran and the adjacent offshore: A review of stratigraphic occurrence and poro‐perm characteristics. Journal of Petroleum Geology 42, 343-370. https://doi.org/10.1111/jpg.12741.
Fattahi, H., 2019. Prediction of porosity in a carbonate reservoir using hybrid simulated annealing algorithm with artificial neural network-A case study. Advanced Applied Geology 8, 48-58. https://doi.org/10. 22055/AAG.2019.26801.1884.
Fertl, W.H., Chilingar, G.V., 1988. Total organic carbon content determined from well logs. SPE formation evaluation 3, 407-419. https://doi.org/10.2118/15612-PA.
Herron, S., Letendre, L., Dufour, M., 1988. Source rock evaluation using geochemical information from wireline logs and cores. AAPG Bulletin 72 (CONF-8809346-).
Hertzog, R. et al., 1989. Geochemical logging with spectrometry tools. SPE formation evaluation 4, 153-162. https://doi.org/10.2118/16792-PA.
Hunt, M.J., 1996. Petroleum geochemistry and geology, 2nd ed. WH Freeman and company, New York, p. 743. https://doi.org/10.1021/ef960184w.
Jang, J.S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics 23, 665-685. https://doi.org/10.1109/21.256541.
Kadkhodaie-Ilkhchi, A., Rahimpour-Bonab, H., Rezaee, M., 2009. A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: An example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran. Computers & Geosciences 35, 459-474. https://doi.org/10.1016/j.cageo.2007.12.007.
Kamali, M.R., Mirshady, A.A., 2004. Total organic carbon content determined from well logs using ΔLogR and Neuro Fuzzy techniques. Journal of Petroleum Science and Engineering 45, 141-148. https://doi.org/1 0.1016/j.petrol.2004.08.005.
Kang, D., Wang, X., Zheng, X., Zhao, Y.-P., 2021. Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra. Fuel 290, 120006. https://doi.org/10.1016/j.fuel.2020 .120006.
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks. IEEE, pp. 1942-1948.
Kukolj, D., 2002. Design of adaptive Takagi–Sugeno–Kang fuzzy models. Applied Soft Computing 2, 89-103. https://doi.org/10.1016/S1568-4946(02)00032-7.
Luffel, D., Guidry, F., Curtis, J., 1992. Evaluation of Devonian shale with new core and log analysis methods. Journal of Petroleum Technology 44, 1192-1197. https://doi.org/10.2118/21297-PA.
Madoliat, R., Khanmirza, E., Pourfard, A., 2017. Application of PSO and cultural algorithms for transient analysis of natural gas pipeline. Journal of Petroleum Science and Engineering 149, 504-514. https://doi.org/10.1016/j.petrol.2016.09.042.
Mamdani, E.H., Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies 7, 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2.
Mann, U., Müller, P.J., 1988. Source rock evaluation by well log analysis (Lower Toarcian, Hils syncline). In: Mattavelli, L., Novelli, L. (Eds.), Organic Geochemistry in Petroleum Exploration. Elsevier, pp. 109-119. https://doi.org/10.1016/B978-0-08-037236-5.50017-8.
Maroufi, K., Alizadeh, B., Rokni, E., Fajrak, M., 2017. Integrating Reservoir Geochemistry and Engineering Approaches to Investigate Connectivity of Asmari and Bangestan Reservoirs in Gachsaran Oilfield. Advanced Applied Geology 7, 27-39. https://doi.org/10.22055/aag.2017.20831.1650.
Mendelson, J.D., 1985. Petroleum source rock logging, Ph.D thesis, Massachusetts Institute of Technology.
Miliaresis, G., Iliopoulou, P., 2004. Clustering of Zagros Ranges from the Globe DEM representation. International Journal of Applied Earth Observation and Geoinformation 5, 17-28. https://doi.org/10.1016/j.jag.2003.08.001.
Mohsenipour, A., Soleimani, B., Zahmatkesh, I., Veisi, I., 2021. Estimation of nuclear magnetic resonance (NMR) log permeability by integrating artificial neural network and imperialist competition optimization algorithm (ICA) in one of the oil fields of southwestern Iran. Arabian Journal of Geosciences 14, 1-18. https://doi.org/10.1007/s12517-021-08821-6.
Mousazadeh, F., Naeem, M.H.T., Daneshfar, R., Soulgani, B.S., Naseri, M., 2021. Predicting the condensate viscosity near the wellbore by ELM and ANFIS-PSO strategies. Journal of Petroleum Science and Engineering 204, 108708. https://doi.org/10.1016/j.petrol.2021.108708.
Nezhad, Y.A., Moradzadeh, A., Kamali, M.R., 2018. A new approach to evaluate Organic Geochemistry Parameters by geostatistical methods: A case study from western Australia. Journal of Petroleum Science and Engineering 169, 813-824. https://doi.org/10.1016/j.petrol.2018.05.027.
Passey, Q., Creaney, S., Kulla, J., Moretti, F., Stroud, J., 1990. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin 74, 1777-1794. https://doi.org/10.1306/0C9B25C9-1710-11D7-8645000102C1865D.
Rezakazemi, M., Dashti, A., Asghari, M., Shirazian, S., 2017. H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. International Journal of Hydrogen Energy 42, 15211-15225. https://doi.org/10.1016/j.ijhydene.2017.04.044.
Sabah, M., Talebkeikhah, M., Agin, F., Talebkeikhah, F., Hasheminasab, E., 2019. Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: A case study from Marun oil field. Journal of Petroleum Science and Engineering 177, 236-249. https://doi.org/10.1016/j.petrol.2019.02.045.
Sadeghtabaghi, Z., Talebkeikhah, M., Rabbani, A.R., 2021. Prediction of vitrinite reflectance values using machine learning techniques: a new approach. Journal of Petroleum Exploration and Production 11, 651-671. https://doi.org/10.1007/s13202-020-01043-8.
Saemi, M., Ahmadi, M., Varjani, A.Y., 2007. Design of neural networks using genetic algorithm for the permeability estimation of the reservoir. Journal of Petroleum Science and Engineering 59, 97-105. https://doi.org/10.1016/j.petrol.2007.03.007.
Safaei-Farouji, M., Kadkhodaie, A., 2022. Application of ensemble machine learning methods for kerogen type estimation from petrophysical well logs. Journal of Petroleum Science and Engineering 208, 1-16. https://doi.org/10.1016/j.petrol.2021.109455.
Schmoker, J.W., 1981. Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs. AAPG Bulletin 65, 1285-1298. https://doi.org/10.1306/03B5949A-16D1-11D7-8645000102C1 865D.
Sepehr, M., Cosgrove, J.W., 2004. Structural framework of the Zagros fold–thrust belt, Iran. Marine and Petroleum Geology 21, 829-843. https://doi.org/10.1016/j.marpetgeo.2003.07.006.
Sfidari, E., Kadkhodaie-Ilkhchi, A., Najjari, S., 2012. Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems. Journal of Petroleum Science and Engineering 86, 190-205. https://doi.org/10.1016/j.petrol.2012.03.024.
Sivanandam, S., Deepa, S., 2008. Introduction to genetic algorithms, by springer berlin heidelberg new york. Springer, 453 p.
Tabatabaei, S.M.E., Kadkhodaie-Ilkhchi, A., Hosseini, Z., Moghaddam, A.A., 2015. A hybrid stochastic-gradient optimization to estimating total organic carbon from petrophysical data: A case study from the Ahwaz oilfield, SW Iran. Journal of Petroleum Science and Engineering 127, 35-43. https://doi.org/10.101 6/j.petrol.2015.01.028.
Takagi, T., Sugeno, M., 1983. Derivation of fuzzy control rules from human operator's control actions. IFAC Proceedings Volumes 16, 55-60. https://doi.org/10.1016/S1474-6670(17)62005-6.
Tissot, B.P., Welte, D.H., 1984. Petroleum formation and occurrence. Springer-Verlag, New York, 966 p.
Trelea, I.C., 2003. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information processing letters 85, 317-325. https://doi.org/10.1016/S0020-0190(02)00447-7.
Tsukamoto, Y., 1979. An approach to fuzzy reasoning method. Advances in fuzzy set theory and applications.
Velez-Langs, O., 2005. Genetic algorithms in oil industry: An overview. Journal of Petroleum Science and Engineering 47, 15-22. https://doi.org/10.1016/j.petrol.2004.11.006.
Walia, N., Singh, H., Sharma, A., 2015. ANFIS: Adaptive neuro-fuzzy inference system-a survey. International Journal of Computer Applications 123, https://doi.org/10.5120/ijca2015905635.
Wang, H., Wu, W., Chen, T., Dong, X., Wang, G., 2019. An improved neural network for TOC, S1 and S2 estimation based on conventional well logs. Journal of Petroleum Science and Engineering 176, 664-678. https://doi.org/10.1016/j.petrol.2019.01.096.
Wang, K., 2001. Computational intelligence in agile manufacturing engineering. In: Gunasekaran, A. (Ed.) Agile manufacturing: the 21st century competitive strategy, Elsevier, pp. 297-315.
Yusefzadeh, S., Nadiri, A.A., 2021. Estimation hydraulic conductivity via intelligent models using geophysical data. Advanced Applied Geology 11, 382-404. https://doi.org/10.22055/AAG.2020.29223.1970.
Zahmatkesh, I., Mohsenipour, A., Amraei, A., 2020. Estimation of reservoir rock properties from conventional well log data by using a hybrid particle swarm optimization and neural network approach. Advanced Applied Geology 10, 96-109. https://doi.org/10.22055/AAG.2020.31475.2047.
Zahmatkesh, I., Soleimani, B., Kadkhodaie, A., Golalzadeh, A., Abdollahi, A.M., 2017. Estimation of DSI log parameters from conventional well log data using a hybrid particle swarm optimization–adaptive neuro-fuzzy inference system. Journal of Petroleum Science and Engineering 157, 842-859. https://d oi.org/10.1016/j.petrol.2017.08.002.