ژنز کانسار آنتیموان مغانلو (باختر زنجان): شواهد زمین‌شناسی، کانه‌زایی، زمین‌شیمی و میان‌بارهای سیال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان

2 هیات علمی دانشگاه زنجان

3 عضو هیأت علمی گروه زمین شناسی دانشگاه زنجان

چکیده

کانه‌زایی در کانسار مغانلو شامل یک پهنه سیلیسی- سولفیدی متشکل از رگه- رگچه‌های برشی کوارتز- استیبنیت می‌باشد که در کنتاکت و داخل آنکلاوهای آمفیبولیتی موجود در گرانیت فلدسپاتی‌شده تشکیل شده است. کانه‌زایی به 3 مرحله قابل تفکیک است. مرحله اول کانه‌زایی شامل سیلیسی و کربناتی‌شدن سنگ‌های میزبان همراه با تشکیل اندکی پیریت دانه‌پراکنده است. مرحله دوم کانه‌زایی با حضور رگه- رگچه‌ها و برش‌های گرمابی با سیمان کوارتز (کلسیت)- استیبنیت مشخص می‌شود. کانه‌زایی مرحله سوم شامل کلسیت با بافت‌های رگچه‌ای و پرکننده فضاهای خالی می‌باشد. دگرسانی‌های گرمابی شامل فلدسپاتی، سیلیسی‌، کربناتی‌ و پروپیلیتیک می‌باشد. استیبنیت کانه‌ اصلی در کانسار مغانلو است که با اندکی پیریت همراهی می‌شود. کوارتز، کلسیت، اکتینولیت، کلریت و تالک مواد باطله می‌باشند. استیبی‌کونیت و گوتیت در اثر فرایندهای برون‌زاد تشکیل شده‌اند. ساخت و بافت کانسنگ شامل دانه‌پراکنده، رگه- رگچه‌ای، بِرشی، شانه‌ای، پوسته‌ای، کاکلی، پرمانند، پُرکننده فضای خالی و جانشینی است. الگوی عناصر کمیاب و کمیاب خاکی بهنجارشده به کندریت برای نمونه‌های کانه‌دار و سنگ‌های میزبان سالم و دگرسان‌شده تقریباً مشابه و بیانگر نقش این سنگ‌ها در تأمین عناصر کانه‌ساز می‌باشد. مطالعه میانبارهای سیال نشان می‌دهد، سیالات مسئول کانه‌زایی در کانسار مغانلو یک سیستم H2O-NaCl با دمای متوسط (143 تا 221 درجه سانتی‌گراد) و شوری متوسط (9/7 تا 7/19 درصد وزنی معادل نمک طعام) است. روند تکامل سیال کانه‌ساز با فرایندهای اختلاط سیالات و جوشش سیال هم‌خوانی دارد. عمق کانه‌زایی بین 360 تا 840 متر زیر سطح ایستابی آب‌های قدیمی می‌باشد. کانه‌زایی آنتیموان در کانسار مغانلو از نوع کانسارهای اپی‌ترمال است.

کلیدواژه‌ها


Aghanabati, A., 2005. Geology of Iran. Geological Survey of Iran, p. 706.
Albinson, T.F., 1988. Geologic reconstruction of paleosurfaces in the Sombrerete, Colorado, and Fresnillo districts, Zacatecas State, Mexico. Economic Geology 83(8), 1647–1667. https://doi.org/10.2113/gsecongeo. 83.8.1647
Bavi, M.H., 2011. Geology, geochemistry, and genesis of Moghanlou Sb deposit, west of Zanjan. MSc. thesis, University of Zanjan, Zanjan (in Persian with English abstract).
Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochemical et Cosmochemical Acta 57(3), 683–684. https://doi.org/10.1016/0016-7037(93) 90378-A  
Bodnar, R.J., Reynolds, T.J. and Kuehn, C.A., 1985b. Fluid-inclusion systematics in epithermal systems. In: Berger, B.R.,  Bethke, P.M. (Eds), Geology and Geochemistry of Epithermal Systems. Reviews in Economic Geology 2, pp. 73–97. https://doi.org/10.5382/Rev.02.05
Boomeri, M., Mojadadi Moghadam, H., Biabangard, H., 2018. Petrography and geochemistry of igneous rocks and Sb and Au mineralization in Sefidsang and Dargiaban areas, southeastern Iran. Iranian Journal of Petrology 9(3), 193–216 (in Persian with English abstract). https://doi.org/10.22108/ijp.2018.110097.1077
Bouzari, F., Clark, A.H., 2006. Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado Hypogene Protore, I Region, northern Chile. Economic Geology 101(1), 95–134. http://dx.doi.org/10.2113/gsecongeo.101.1.95
Camprubi, A. and Albinson, T., 2007. Epithermal deposits in Mexico, update of current knowledge, and an empirical re-classification. In: Alaniz-Álvarez, S.A., Nieto-Samaniego, Á.F.  (Eds), Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico. Geological Society of America, pp. 14–39. https://doi.org/10.1130/2007.2422(14)
Canet, C., Franco, S.I., Prol-Ledesma, R.M., González-Partida, E., Villanueva-Estrada, R.E., 2011. A model of boiling for fluid inclusion studies: Application to the Bolaños Ag–Au–Pb–Zn epithermal deposit, Western Mexico. Journal of Geochemical Exploration 110(2), 118–125. https://doi.org/10. 1016/j.gexplo.2011.04.005
Cooke, D.R., McPhail, D.C., 2001. Epithermal Au-Ag-Te mineralization, Acupan, Baguio district, Philippines: numerical simulations of mineral deposition. Economic Geology 96(1), 109–131. https://doi.org/10.2113/96.1.109
Cooke, D.R., Simmons, S.F., 2000. Characteristics and genesis of epithermal gold deposits: Society of Economic Geology Reviews 13, 221–244. https://doi.org/10.12691/jgg-6-3-4
Fan, H.R., Hu, F.F., Wilde, S.A., Yang, K.F., Jin, C.W., 2011. The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid-inclusion and stable-isotope evidence for an origin from magmatic fluids. International Geology Review 53, 25–45. https://doi.org/10.1080/00206810902875370
Fathian, L., Aliani, F., Saadat, S., Baharifar, A.A., Zarrinkoub, M.H., 2018. Petrogenesis and tectonomagmatic setting of Moghanlou granitoid (NW Iran). Iranian Journal of Geology 46(12), 33–48 (in Persian with English abstract).
Fournier, R.O., 1985. The behavior of silica in hydrothermal solutions. In: Berger, B.R., Bethke, P.M.  (Eds), Geology and Geochemistry of Epithermal Systems. Reviews in Economic Geology 2, pp. 45–61. https://doi.org/10.5382/Rev.02.03
Ghorbani, M., 2013. The economic geology of Iran: mineral deposits and natural resources. Springer. p. 569.
Goldstein, R.H., 2003. Petrographic analysis of fluid inclusions. In: Samson, I., Anderson, A., Marshall, D. (Eds.), Fluid Inclusions: Analysis and Interpretation. Mineral Association of Canada Short Course 32, pp. 9–53.
Goldstein, R.H., Reynolds, T.J., 1994. Systematics of fluid inclusions in diagenetic minerals. Tulsa, Oklahoma: Society for Sedimentary Geology (SEPM).
Haas, J.L., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Economic Geology 66(6), 940–946. https://doi.org/10.2113/gsecongeo.66.6.940
Hedenquist, J.W., Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature 370(6490), 519–527. https://doi.org/10.1038/370519a0
Hedenquist, J.W., Arribas, A., 1998. Evolution of an intrusion-centered hydrothermal system: Far southeast Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Economic Geology 93(4), 373–404. http://dx.doi.org/10.2113/gsecongeo. 93.4.373
Hedenquist, J.W., Arribas, A., Gonzalez-Urien, E., 2000. Exploration for epithermal gold deposits. In: Hagemann, S.G., Brown, P.E. (Eds), Gold in 2000. Reviews in Economic Geology 13 pp. 245–277. https://doi.org/10.5382/Rev.13.07
Heidari, M., Ghaderi, M., Kouhestani, H., 2017. Arabshah epithermal Au mineralization within
sedimentary host rock, SE Takab, NW Iran. Scientific Quarterly Journal of Geosciences
27(105), 265–282 (in Persian with English abstract). https://doi.org/10.22071/gsj.2017.53971
Henley, R.W., Hughes, G.O., 2000. Underground fumaroles: “Excess heat” effects in vein formation. Economic Geology 95(3), 453–466. https://doi.org/10.2113/gsecongeo.95.3.453
Honarmand, M., Xiao, W., Nabatian, G., Blades, M.L., Dos Santos, M.C., Collins, A.S., Ao, S., 2018. Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and Sr-Nd-Pb isotopes from late Neoproterozoic basement in the Mahneshan area, NW Iran: implications for Ediacaran active continental margin along the northern Gondwana and constraints on the late Oligocene crustal anataxis. Gondwana Research 57, 48–76. https://doi.org/10.1016/j.gr.2017.12.009
Jébrak, M., 1997. Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geology Reviews 12, 111–134. https://doi.org/10.1016/S0169-1368(97)00009-7
Jobson, D.H., Boulter, C.A., Foster, R.P., 1994. Structural controls and genesis of epithermal gold-bearing breccias at the Lebong Tandai mine, Western Sumatra, Indonesia. Journal of Geochemical Exploration 50(1–3), 409–428. https://doi.org/10.1016/0375-6742(94)90034-5
Klemm, L.M., Pettke, T., Heinrich, C.A., Campos, E., 2007. Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu–Mo ore deposition from low-salinity magmatic fluids. Economic Geology 102(6), 1021–1045. https://doi.org/10.2113/gsecongeo.102.6.1021
Lattanzi, P., 1991. Applications of fluid inclusions in the study and exploration of mineral deposits. European Journal of Mineralogy 3(4), 689–697. https://doi.org/10.1127/ejm/3/4/0689
Li, H., Tang, J., Hu, G., Ding, S., Li, Z., Xie, F., Teng, L., Cui, S., 2019. Fluid inclusions, isotopic characteristics, and geochronology of the Sinongduo epithermal Ag–Pb–Zn deposit, Tibet, China. Ore Geology Reviews 107, 692–706. https://doi.org/10.1016/j.oregeorev.2019.02.033
Liu, J., Mao, J.W., Wu, G., Wang, F., Luo, D.F., Hu, Y.Q., Li, T.G., 2014. Fluid inclusions and H-O–S–Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongjiang Province, China. Ore Geology Reviews 59, 83–96. https://doi.org/10.1016/j.oregeorev.2013.12.006
Lotfi, M., 2001.Geological map of Mahneshan, scale 1:100000. Geological Survey of Iran.
Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews 7, 25–41. https://doi.org/10.1016/0169-1368(92)90017-F
Mazloum, Gh., 2018. Mineralogy, geochemistry, and genesis of Lakhshak Sb deposit, NW Zahedan. MSc. thesis, Shahrood University of Technology, Shahrood (in Persian with English abstract).  
Mehdikhani, B., 2016. Exploration report of Sb in Moghanlou area. Industry, Mine and Trade Organization of Zanjan, Zanjan, p. 198 (in Persian).
Mehrabi, B., Tale Fazel, E., Nokhbatolfoghahaie, A., 2011. The role of magmatic and meteoric water
mixing in mineralization of Shurab polymetal ore deposit South of Ferdows: Isotope geochemistry and microthermometry evidence. Iranian Journal of Mineralogy and Crystallography 19, 121–130 (in Persian with English abstract).  
Mehrabi, B., Tale Fazel, E., Yardley, B., 2019. Ore geology, fluid inclusions, and O-S stable isotope
characteristics of Shurab Sb-polymetallic vein deposit, eastern Iran. Chemie der Erde 79, 307–322. https://doi.org/10.1016/j.geoch.2018.12.004
Moncada, D., Baker. D., Bodnar, R.J., 2017. Mineralogical, petrographic, and fluid inclusion evidence for the link between boiling and epithermal Ag–Au mineralization in the La Luz area, Guanajuato Mining District, México. Ore Geology Reviews 89, 143–170. https://doi.org/10.1016/j.oregeorev.2017.05.024
Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D., Bodnar, R.J., 2012. Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical Exploration 114, 20–35. https://doi.org/10.1016/j.gexplo.2011.12.001
Muntean, J.L., Einaudi, M.T., 2001. Porphyry-epithermal transition, Maricunga Belt, northern Chile. Economic Geology 96(4), 743–772. https://doi.org/10.2113/gsecongeo.96.4.743
 
Naden, J., Kilias, S.P., Darbyshire, D.PF., 2005. Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: The example of Milos Island. Geology 33(7), 541–544. https://doi.org/10.1130/G21307.1
Najafzadeh, M., Ebrahimi, M., Mokhtari, M.A.A., Kouhestani, H., 2017. The Arabshah occurrence:
An epithermal Au–As–Sb Carlin-type mineralization in the Takab–Angouran–Takht-e Soleyman metallogenic zone, western Azerbaijan. Advanced Applied Geological Journal 6(22), 61–76 (in Persian with English abstract). https://doi.org/10.22055/aag.2016.12709
Ouyang, H., Wu, X., Mao, J.W., Su, H., Santosh, M., Zhou, Z., Li, C., 2014. The nature and timing of ore formation in the Budunhua copper deposit, southern Great Xing'an Range: Evidence from geology, fluid inclusions, and U–Pb and Re-Os geochronology. Ore Geology Reviews 63, 238–251. https://doi.org/10.1016/j.oregeorev.2014.05.016
Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer, Berlin, p. 1250.
Rabiei, M., Chi, G., Normand, C., Davis, W.J., Fayek, M., Blamey, N.J.F., 2017. Hydrothermal rare earth element (Xenotime) mineralization at Maw Zone, Athabasca Basin, Canada, and its relationship to unconformity-related uranium deposits. Economic Geology 112(6), 1483–1507. https://doi.org/10.5382/econgeo.2017.4518
Ramboz, C., Pichavant, M., Weisbrod, A., 1982. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology 37(1–2), 29–48. https://doi.org/10.1016/0009-2541(82)90065-1
Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy 12, Mineralogical Society of America, p. 644.
Roedder, E., Bodnar, R.J., 1980. Geologic pressure determinations from fluid inclusion studies. Annual Reviews of Earth and Planetary Science 8(1), 263–301. https://doi.org/10.1146/annurev.ea.08.050180. 001403
Ronacher, E., Richards, J.P., Johnston, M.D., 2000. Evidence for fluid phase separation in high-grade ore zones at the Porgera gold deposit, Papua New Guinea. Mineralium Deposita 35(7), 683–688. https://doi.org/10.1007/s001260050271
Rusk, B.G., Reed, M.H., Dilles, J.H., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology 103(2), 307–334. https://doi.org/10.2113/ gsecongeo.103.2.307
Shepherd, T.J., Ranbin, A.H., Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Blackie, Glasgow, p. 223.
Simmons, S.F., Brown, K.L., 2006. Gold in magmatic-hydrothermal solutions and the rapid formation of a Giant ore deposit. Science 314(5797), 288–291.
Simmons, S.F., Browne, P.R.L., 2000. Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments. Economic Geology 95(5), 971–1000. https://doi.org/10.2113/gsecongeo.95.5.971
Simmons, S.F., White, N.C., John, D.A., 2005. Geological characteristics of epithermal precious and base metal deposits. In  Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J.,  Richards, J.P. (Eds.), Economic Geology One Hundredth Anniversary Volume, pp. 485–522. https://doi.org/10.5382/AV100.16
Simpson, M.P., Mauk, J.L., Simmons, S.F., 2001. Hydrothermal alteration and hydrologic evolution of the Golden Cross epithermal Au–Ag deposit, New Zealand. Economic Geology 96(4), 773–796. https://doi.org/ 10.2113/gsecongeo.96.4.773
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds), Magmatism in the Ocean Basins, Geological Society of London Special Publications 42(1), pp. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Takács, Á., Molnár, F., Turi, J., Mogessie, A., Menzies, J.C., 2017. Ore mineralogy and fluid inclusion constraints on the temporal and spatial evolution of a high-sulfidation epithermal Cu–Au–Ag deposit in the Recsk ore complex. Hungary. Economic Geology 112, 1461–1481. https://doi.org/10.5382/econgeo.2017.4517
Taylor, R., 2009. Ore textures: Recognition and interpretation. Springer-Verlag, Berlin, p. 287.
Thiersch, P.C., Williams-Jones, A.E., Clark, J.R., 1997. Epithermal mineralization and ore controls of the Shasta Au–Ag deposit, Toodoggone District, British Columbia, Canada. Mineralium Deposita 32(1), 44–57. https://doi.org/10.1007/s001260050071
Thompson, R.N., 1982. Magmatism of the British Tertiary volcanic province. Scottish Journal of Geology 18(1), 49–107. https://doi.org/10.1144/sjg18010049
Urusova, M.A., 1975. Volume properties of aqueous solutions of sodium chloride at elevated temperatures and pressures. Russian Journal of Inorganic Chemistry 20, 1717–1721.
U.S. Geological Survey, 2021. Mineral commodity summaries 2021. U.S. Geological Survey, p. 200. https://doi.org/10.3133/mcs2021
White, N.C., Hedenquist, J.W., 1995. Epithermal gold deposits: Styles, characteristics and exploration. SEG News Letters 23(1), 9–13.
Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187. https://doi.org/10.2138/am.2010.3371
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos 55(1–4), 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
Whitford, D.J., Korsch, M.J., Porritt, P.M., Craven, S.J., 1988. Rare-earth element mobility around the volcanogenic polymetallic massive sulfide deposit at Que River, Tasmania, Australia. Chemical Geology 68(1–2), 105–119. https://doi.org/10.1016/0009-2541(88)90090-3
Yardley, B.W.D., 2005. Metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology 100(4), 613–632. https://doi.org/10.2113/gsecongeo.100.4.613
Yardley, B.W.D., Bodnar, R.J., 2014. Fluids in the continental crust. Geochemical Perspectives Letters 3(1), 1–2. https://doi.org/10.7185/geochempersp.3.1
Zhai, D., Liu, J., Wang, J., Yao, M., Wu, S., Fu, C., Liu, Z., Wang, S., Li, Y., 2013. Fluid evolution of the Jiawula Ag–Pb–Zn deposit, Inner Mongolia: Mineralogical, fluid inclusion, and stable isotopic evidence. International Geology Review 55(2), 204–224. https://doi.org/10.1080/00206814.2012.692905
Zhu, Y.F., Zeng, Y.S., Jiang, N., 2001. Geochemistry of the ore-forming fluids in gold deposits from the Taihang Mountains, northern China. International Geology Review 43(5), 457–473. https://doi.org/10.1080/00206810109465026