زمین‌شناسی و کانه‌زایی کانسار مس (طلا- نقره) اپی ترمال شمال‌خاور نارباغی (ساوه)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه کانی‌شناسی و اکتشافات معدنی کاربردی، پژوهشکده علوم زمین، تهران، ایران

2 سازمان زمین‌شناسی کشور/ پژوهشکده علوم زمین

چکیده

کانه‌زائی مس (طلا-نقره) شمال‌خاور نارباغی در بخش میانی کمان ماگمائی ارومیه-دختر، همجوار با ذخائر مس کوه‌پنگ و نارباغی، قرار دارد. عمده واحدهای این محدوده شامل سنگ‌های آتشفشانی-رسوبی ائوسن و توده‌های نیمه‌عمیق الیگومیوسن می‌باشد که جایگیری آن در ارتباط با گسلهای امتدادلغز در حوضه‌های کم‌عمق رسوبی است. پهنه دگرسان با روند شمال‌خاور-جنوب‌باختر، در امتداد شکستگی‌های‌ منتهی به توده ‌نفوذی‌، با انواع دگرسانی‌های‌ سیلیسی، آرژیلیک (حدواسط- به‌‌ندرت پیشرفته)، پروپیلیتیک، سریسیتی، کربناتی و سولفیدی‌ همراه است. کانه‌زایی در ارتباط با شکستگی‌ها و تشکیل رگه‌های نسبتا طویل (طول بیشتر از 400 و عرض متوسط 1 متر) همراه با مجموعه‌های برشی‌ در کنار بافت‌های جانشینی، دانه‌پراکنده و رگه-رگچه‌ای است. این رگه‌ها اغلب شامل کوارتز، سریسیت، سیدریت و کالکوپیریت، بورنیت، کالکوسیت، کوولیت با پیریت و به‌ندرت سولفوسالتهائی چون تنانتیت و تتراهدریت می‌باشد. این سامانه با ایجاد انواع دگرسانی فعالیت خود را به‌صورت رگه‌های سفید سیلیسی در امتداد شکستگی‌ها آغاز و با ایجاد برشهای گرمابی و نفوذ سیالات سیلیسی- سولفیدی ادامه می‌یابد. مس بیشترین همبستگی را با روی، نقره، آرسنیک و طلا نشان می‌دهد. کانه‌زائی، تحت شرائط دمایی240-145 درجه‌ سانتیگراد و شوری سیال 20 تا 30 درصد وزنی معادل نمک‌ تشکیل شده‌ است. حضور توام سیال‌های دو فازی غنی از مایع و تک فازی گاز، به فرایند جوشش و کاهش دما و افت فشار اشاره دارد. لذا، این سامانه شواهد سامانه‌های اپی‌ترمال سولفیداسیون حدواسط در کمان را نشان می‌دهد که در آن احتمالا سیال ماگمائی در مواجهه با ساختارهای نفوذپذیر و اختلاط با سیالهای محیطی (جوی و حوضه-ای)، باعث ته‌نشست مس- طلا همراه با سیدریت شده است.

کلیدواژه‌ها


Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., Worlet, R., 2011. Zagros orogeny; a subduction- dominated process. Geological Magazine 148(5-6), 692–725. https://doi.org/10.1017/s001675681100046.
Aghazadeh, M., Hou, Z., Badrzadeh, Z., Zhou, L., 2015. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews 70, 385–406. https://doi.org/10.1016/j.oregeorev.2015.03.003.
  Alavi, M., 1994. Tectonic of the Zagros orogenic belt of Iran: new data and interpretations: Tectonophysics 229(3-4): 211-239. https://doi.org/10.1016/0040-1951 (94)90030-2.
  Allen, M.B., Kheirkhah, M., Emami, M.H., Jones, S.J., 2011. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone: Geophysical Journal International 184(2), 555–574. https://doi.org/10.1111/j.1365-246x.2010.04874.
  Amidi, S., Shahrabi, M., Navi, V., 2005. Geological map of Zavieh, scale: 1: 100,000. Geological Survey of Iran.
 Caillat, C., Dehlavi, P., Martel Jantin, B., 1978. Géologie de la région de Saveh (Iran): contribution à l’étude du volcanisme et du plutonisme tertiaires de la zone de l’Iran central. Bulletin de la Societe Geologique de Françe, S7-XXIV (4), 777–784. https://doi.org/10.2113/gssgfbull.s7-xxiv.4.777.
  Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neo-Tethyan subduction and Zagros orogeny. Lithos 162–163(2013), 70–87. https://doi.org/10.1016/j.lithos.2013.01.006. 
Creaser, R. A., White, A. J. R., 1991. Yardea Dacite; large-volume, high-temperature felsic volcanism from the middle Proterozoic of South Australia, Geology 19(48–51). https://doi.org/10.1130/0091-7613.
  Dorozi, R., Vosoghi Abedini, M., 2009. Investigation of the role of magmatic subtraction and crustal contamination in volcanic rock formation south and SE south of Boeen-Zahra. journal of Iran Geological Quarterly, 3(10), 15-23 (In Persian).
  Echavarria, L., Nelson, E., Humphrey, J., Chavez, J., Escobedo, L., Iriondo, A., 2006. Geologic evolution of the Caylloma epithermal vein district, southern Peru. Economic Geology 101(4), 843–863.
  Fatehi, M., Asadi Haroni, H., 2019. Geophysical signatures of the gold rich porphyry copper deposits: A case study at the Dalli Cu-Au porphyry deposit. Journal of Economic Geology, 10(2), 639-675.
  Fazli, N., Ghaderi, M., Lentz, D., ley, J., 2019. Geology, Alteration, Mineralogy and Geochemistry of the Cu-Ag North Narbaghi Epithermal Ore, NE Saveh. Journal of Earth Sciences 28 (112), 13-22.
  Firouzbakht, M.S., Ghaderi, M., Tajedin, H.A., 2008. Geology and mineralization in the Lak base metal (-Au) deposit, south Buin Zahra. 10th, symposium of Iranian society of economic geology, Esfahan, Iran.
  Ghalamghash, J., 1998, Geological map of Saveh, scale: 1: 100,000. Geological Survey of Iran.
  Hart, C.J.R., McCoy, D., Goldfarb, R.J., Smith, M., Roberts, P., Hulstein, R., Bakke, A.A., Bundtzen, T.K., 2002. Geology, exploration and discovery in the Tintina gold province, Alaska and Yukon. Society of Economic Geologists Special Publication9, 241-274.
Hedenquist, J.W., Arribas, A., Reynolds, T.J., 1998. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology 93, 373–404. 
  Hedenquist, J.W., 2015. Porphyry copper potential in Mexico: Transitions from epithermal lithocaps to veins and tops of porphyry deposits. AIMMGM Presentation, Acapulco October, Extended abstract, 1–8.
  Heidari S.M., Daliran F., Paquette J.L., Gasquet D., 2015. Geology, timing and genesis of the high sulfidation Au (–Cu) deposit of Touzlar, NW Iran. Ore Geology Reviews 65(2), 460-486. https://doi.org/10.1016/j.oregeorev.2014.05.013.
  Heidari, M., Zarasvandi, A., Rezaei, M., Raith, J., Saki, A., 2019. Physicochemical Attributes of Parental Magma in Collisional Porphyry Copper Systems; Using Biotite Chemistry, Case Study: Chahfiruzeh Porphyry Copper Deposit. Journal of Economic Geology, 10(2), 586-561. https://doi.org/10.2113/gsecongeo.101.4.843.
  Iran Industrial Minerals Mine Company (I.I.M.M.C), 2019. Detailed exploration report of NE Narbaghi Copper deposit (Unpublished in Persian).
  Khodaparast, S., Madanipour1, S., Nozaem, R., Hessami, K., 2020. Structural evidence on strike slip Kinematic inversion of the Kushk-eNosrat Fault zone, Central Iran. Geopersia 10 (1), 195-209.
   Khodaparast, S., Mohajjel, M., Haj-Amini, S., 2014. Structural study and influence of thickness in Qom Formation on geometry of the structures, Dokhan Area, West Saveh. Geoscinence 24 (93), 235-244 (In Persian with English Abstract).
    Kouhestani, H., Ghaderi, M., Zaw, K., Meffre, S., Emami, M.H., 2011. Geological setting and timing of the Chah Zard breccia-hosted epithermal gold–silver deposit in the Tethyan belt of Iran. Mineralium Deposita. 47(2011), 425-440. https://doi.org/10.1007/s00126-011-0382-3.
  Morley, C.K., Kongwung, B., Julapour, A., Abdolghafourian, M., Hajian, M., Waples, D., Warren, J., Otterdoom, H., Srisuriyon, K., Kazemi, H., 2009. Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in The Qom– saveh area. Geosphere 5(4), 325–362. https://doi.org/10.1130/ges00223.1.
  Muntean, J.L., Kesler, S.E., Russell, N., Polanco, J., 1990. Evolution of the Monte Negro
acid sulfate Au–Ag deposit, Pueblo Viejo, Dominican Republic – important factors in
grade development.  Economic Geology 85, 1738–1758.
  Nouri, F., Azizi, H., Stern, R.J., Asahara, Y., Khodaparast, S., Madanipour, S., Yamamoto. K., 2018. Zircon U-Pb dating, geochemistry and evolution of the Late Eocene Saveh magmatic complex, Central Iran: partial melts of sub-continental lithospheric mantle and magmatic differentiation. Lithos 314–315(2018): 274-292. https://doi.org/10.1016/j.lithos.2018.06.013.
  Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer, Berlin, 1250 pp. https://doi.org/10.1007/978-1-4020-8613-7.
  Rajabpour, Sh., Behzadi, M., Jiang, Sh-Y., Rasa, I., Lehmann, B., Ma, Y., 2017. Sulfide chemistry and sulfur isotope characteristics of the Cenozoic volcanic-hosted Kuh-Pang copper deposit, Saveh county, NW central Iran. Ore Geology Reviewe 86(2017), 563–583. https://www.researchgate.net/publication/314175070.
  Richards, J., Wilkinson, D., Ulrich, T., 2006. Geology of the Sari Gunay epithermal gold deposit, northwest Iran. Economic Geology. 101(8),1455-1495. https://doi.org/10.2113/gsecongeo.101.8.1455.
  Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviwe 70(2015), 323–345.
  Richards, J.P., Sholeh, A., 2016. The Tethyan tectonic history and Cu-Au metallogeny of Iran. In:     Richards, J.P. (Ed.), Tectonics and Metallogeny of the Tethyan Orogenic Belt: Society of Economic Geologists Special Publication 19(2016), 193–212.
  Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, Mineralogical Society of America, 644 p.
  Sahandi, M.R., Delavar, S.T., Sadeghi, M., Jafari, E., Mousavi, S.E., 2006. Digital geology map of Iran, scale 1:1000,000. Geological Survey of Iran.
  Shepherd, T.J., Rankin, A.H. Alderton, D.H., 1985. A practical guide to fluid inclusion studies. Blackie Academic & Professional (an Imprint of Chapman & Hall), p. 224.
  Simmons, S.F., Simpson, M.P. Mauk, J., 2000. The mineral products of boiling in the golden cross epithermal deposit. New Zealand Minerals and Mining Conference Proceedings 209-216.
  Sillitoe, RH., Hedenquist, JW., 2003. Linkages between volcanotectonic settings, ore-fluid compositions and epithermal precious metal deposits. Society of Economic Geologists Special Publication 10(2003), 315–343. https://doi.org/10.5382/sp.10.16.
  Verdel, C., Wernicke, B. P., Hassanzadeh, J., Guest, B., 2011, A Paleogene extensional arc flare-up in Iran, Tectonics 30 (3), 1-20. https://doi.org/10.1029/2010tc002809.
  Wang, L., Qin, K.Z., Song, G.X., Li, G.M., 2019.  A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews 107 (2019) 434–456. https://doi.org/10.1016/j.oregeorev.2019.02.023.
 Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187. https://doi.org/10.2138/am.2010.3371.
  Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposit. Lithos 55, 229–72.