Analysis of Groundwater Quality Spatial Distribution Pattern and Spatial Variations in Electrical Conductivity (Case Study: Hamadan Province)

Authors

1 Shahid Chamran University of Ahvaz

2 Faculty of Earth Sciences

Abstract

Changes in the quality of underground resources for various reasons, especially the unconventional use of these resources can have devastating effects on the environment.In this research, groundwater quality parameters including electrical conductivity, total soluble solids, acidity, sodium adsorption ratio, hardness, bicarbonate, chloride, sulfate, calcium, magnesium, sodium, potassium, and the sum of anions and cations were used. in this research, groundwater quality data related to piezometric water wells affiliated to the Hamadan Regional Water Company for four-year periods in 2009, 2013, 2017, and 2020 in the plains of Hamadan province have been used. The results of Moran and coefficient of gery show that the spatial distribution pattern of all water quality parameters in 2009 and 2020 is random and for the parameters of electrical conductivity and sodium adsorption ratio in 1992 and 1996, respectively, with a high level of confidence of 95% and 90%, respectively, it had a spatial distribution with a cluster pattern with high values. To investigate the spatial variations of electrical conductivity using the Kriging method, water quality maps in terms of electrical conductivity parameters for the years 2009, 2013, 2017, and 2020 have been prepared. The map of electrical conductivity changes prepared from 2009 to 2020 years shows that the amount of electrical conductivity in the city of Hamedan (Qahvand) and Razan and Kaboudar Ahang plains has more increasing changes, which indicates a decrease in groundwater quality in the case study area. Therefore, planning is necessary to correct the decline in groundwater quality.

Keywords


Anselin, L., 1995. Local indicators of spatial association—LISA. Geographical analysis. 27,  93–115.  https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.
Arslan, H., 2012. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: the case of Bafra Plain. Turkish Journal of Water Science and Management 113,  7–63.  https://doi.org/10.1016/j.agwat.2012.06.015.
Barca, E. and Passarella, G., 2008. Spatial evaluation of the risk of groundwater quality degradation: A comparison between disjunctive kriging and geostatistical simulation. Journal of Environmental  Monitorong and Assessment 137(1-3), 261-273. https://doi.org/10.1007/s10661-007-9758-3.
Belkhiria, L., Tiria, A., Mounib, L., 2020. Spatial distribution of the groundwater quality using kriging and Co-kriging interpolations. Groundwater for Sustainable Development 11.   https://doi.org/10.1016/j.gsd.2020.100473.
Bundschuh, J., Maity, J.P., Mushtaq, S., Vithanage, M., Seneweera, S., Schneider, J., Bhattacharya, P., Khan, N.I., Hamawand, I., Guilherme, L.R.G., Reardon-Smith, K., Parvez, F., Morales-Simfors, N., Ghaze, S., Pudmenzky, C., Kouadio, L., Chen, C. Y., 2017. Medical geology in the framework of the sustainable development goals. Science of the Total Environment 581–582, 87–104.   https://doi.org/10.1016/j. scitotenv.2016.11.208.
DasMajumdar, D., Biswas, A., 2016. Quantifying land surface temperature change from LISA clusters: An alternative approach to identifying urban land use transformation. Landscape and Urban Planning. 153,  51–65.  https://doi.org/10.1016/j.landurbplan.2016.05.001.
Dindaroglu, T., 2014. The use of the GIS Kriging technique to determine the spatial changes of natural radionuclide concentrations in soil and forest cover. Journal of Environmental Health Science and Engineering 12, 130.  https://doi.org/10.1186/s40201-014-0130-6.
Ducci, D., 1999. GIS techniques for mapping groundwater contamination risk. Natural Hazards 20, 79–294.  https://doi.org/10.1023/A:1008192919933.
Eamer, J.B.R., Walker, I.J., 2013. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics. Geomorphology 191, 94–108. https://doi.org/10.1016/j.geomorph.2013.03.005.
Enwright, N., Hudak, P.F., 2009. Spatial distribution of nitrate and related factors in the High Plains aquifer. Texas Environmental Geology 58, 1541–1548. https://doi.org/10.1007/s00254-008-1655-8.
Fienen, M. N. and Arshad, M., 2016. The International Scale of the Groundwater Issue. In: Jakeman A.J., Barreteau O., Hunt R.J., Rinaudo J.D., Ross A., (Eds.), Integrated Groundwater Management. Springer, Cham,  21-48.  https://doi.org/10.1007/978-3-319-23576-9.
Getis, A. Ord, J. K., 1992. The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis 24, no. 3.  https://doi.org/10.1111/j.1538-4632.1992.tb00261.x.
Ghasemi, A., Zare Abyaneh, H., Shahsavar, A., and Yaghoubi Kikleh, b.,2010. Investigation of quantitative and qualitative changes in groundwater in Hamadan plain - spring. Plant and Ecology, 6 (23),  109-127[In Persian].
Gunarathna, M.H.J.P., Nirmanee, K.G.S., Kumari, M.K.N., 2016. Are geostatistical interpolation methods better than deterministic interpolation methods in mapping the salinity of groundwater? International Journal of Research and Innovations in Earth Sciences 3, 59–64.
Guettaf, M., Maoui, A., Ihdene, Z., 2014. Assessment of water quality: a case study of the seybouse river (North East of Algeria). Applied Water Sciences  7, 295–307. https://doi.org/10.1007/s13201-014-0245-
Guo, G., Wu, Z., Xiao, R.; Chen, Y., Liu, X., Zhang, X., 2015. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape Urban Planing 135, 1–10.  https://doi.org/10.1016/j.landurbplan.2014.11.007.
Gyamfi, C., Ndambuki, J., Diabene, P., Kifanyi, G., Githuku, C., Alexander, A., 2016. Using GIS for spatial exploratory analysis of borehole data: thefirst-hand approach towards groundwater development. Journal of Science and Technology 36,  38–48.  https://doi.org/10.4314/just.v36i1.7.
Kazi, T. G., Arain, M., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A. and Shah, A. Q., 2009. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety 72, 301-309.  https://doi.org/10.1016/j.ecoenv.2008.02.024.
Kholghi, M., Hosseini, S.M., 2009. Comparison of groundwater level estimation using neuro-fuzzy and ordinary kriging. Environmental Modeling and Assessment 14, 729–737.  https://doi.org/10.1007/s10666-008-9174-2.
Kumar, P. S. and Balamurugan, P., 2018. Evaluation of groundwater quality for irrigation purposes in Attur Taluk, Salem, Tamilnadu, India. Water and Energy International 61(4), 59-64.
Mitchell, A., 2005. The ESRI Guide to GIS Analysis, Volume 2. ESRI Press,
Moradi, M., Vagharfard, H., Khorani, A. and Mahmoudinejad, V., 2011. Evaluation of different interpolation methods in the zoning of groundwater salinity using cross-validation technique (Case study of Shahrekurd plain). Journal of Remote Sensing and GIS 3(1),  35-44 (In Persian with English abstract).
Nas, B., 2009. A geostatistical approach to the assessment of the spatial distribution of groundwater quality. Polish Journal of Environmental Studies 18 (6).
Osati, Kh., Salajegh, A. and Arekhi, S., 2012. Spatial variations of nitrate concentrations in groundwater by geostatistics (Case study: Kurdan Plain). Journal of Range and Watershed Managment 65(4), 461-472 (In Persian with English abstract). https://doi.org/10.22059/jrwm.2012.32045.
Piri, H., 2019. Modeling and monitoring of subsurface water quality indicators of Sistan Plain using geographic information systems. Environment and Water Engineering 5(1), 15– 22. (In Persian with English abstract).  https://doi.org/10.22034/jewe.2019.138356.1268.
Quino Lima, I., Ramos Ramos, O.E., Ormachea Muñoz, M., Quintanilla Aguirre, J., Duwig, C., Maity, J.P., Sracek, O., Bhattacharya, P., 2020. Spatial dependency of arsenic, antimony, boron, and other trace elements in the shallow groundwater systems of the Lower Katari Basin, Bolivian Altiplano. Science of The Total Environment 719, 137505.  https://doi.org/ 10.1016/j.scitotenv.2020.137505.
Shah, T., Molden, D., Sakthivadivel, R., Seckler, D., 2000. The Global Groundwater Situation: Overview of Opportunities and Challenges; International Water Management Institute: Colombo, Sri Lanka,  2–22.  http://dx.doi.org/10.5337/2011.0051.
Shamsi, U.M., 2005. GIS Applications for Water,Wastewater, and Stormwater Systems; CRC Press: Boca Raton, FL, USA.  https://doi.org/10.1201/9781420039252.
Su, W., Zhang, X., Wang, Z., Su, X., Huang, J., Yang, S., Liu, S., 2011. Analyzing disaster-forming environments and the spatial distribution of flood disasters and snow disasters that occurred in China from 1949 to 2000. Mathematical and Computer Modelling 54, 1069–1078.  https://doi.org/10.1016/j.mcm.2010.11.037.
Like. W.A., Meli’I, J.L., Nouck, P.N., Tabod, C.T., Nyam, F.E.A., Aretouyap, Z., 2015. Assessment of groundwater quality in Yaounde area, Cameroon, using geostatistical and statistical approaches. Environmental Earth Sciences.  https://doi.org/10.1007/s12665-015-4779-7.
Thadchayini, T., Thiruchelvam, S., 2005. An economic evaluation of drip irrigation project for banana cultivation in Jaffna district. In Water Resources Research in Sri Lanka, Proceedings of the Symposium of the Water Professionals Day, Peradeniya, Sri Lanka, Galagedara, L.G., (Eds.), Postgraduate Institute of Agriculture:Peradeniya, Sri Lanka,  111–126.
Wagh, V.M., Panaskar, D.B., Varade, A. M., Mukate, S.V., Gaikwad, S.K., Pawar, R.S., Muley A.A., Aamalawar, M.L., 2016. Major ion chemistry and quality assessment of the groundwater resources of Nanded tehsil, a part of southeast Deccan Volcanic Province, Maharashtra, India. Environmental Earth Sciences 75(21), 1418.  https://doi.org/10.1007/s12665-016-6212-2.
Wagh, V., Panaskar, D., Aamalawar, M.L., Lolage, Y.P., Mukate, S., and Narshimma, A., 2018. Hydrochemical characterization and groundwater suitability for drinking and irrigation use in the semiarid region of Nashik, Maharashtra, India. Hydrospatial Analysis 2(1), 43-60.  https://doi.org/10.21523/gcj3.18020104.
Yan, F., Cao, S., Liu, X., Yang, K., 2008. Design of groundwater level monitoring network with ordinary kriging. International Journal of Hydrogen Energy 20, 339–346.  http://dx.doi.org/10.1016/S1001-6058(08)60066-9.
Yan, W., Li, J., Bai, X., 2016. Comprehensive assessment and visualized monitoring of urban drinking water quality. Artificial Intelligence Chemometrics and Intelligent Laboratory Systems 155, 26–35.  https://doi.org/10.1016/j.chemolab.2016.03.026.
Zhang, C., Luo, L., Xu, W., Ledwith, V., 2008. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Science of The Total Environment 398 (1),  212–221.  https://doi.org/10.1016/j.scitotenv.2008.03.011.
Zhou, Z.M., Zhang, G.H., Wang, J.Z., Yan, M.J., 2011. Risk assessment of soil salinity by multiple-variable indicator kriging in the low plain around the Bohai Sea. Shuili Xuebao 42(10), 1144–1151.