بررسی توان مخزنی سازند سروک (سنومانین-تورونین) با تاکید بر واحدهای جریانی و تعیین ارتباط آن با رخساره‌های رسوبی این مخزن در یکی از میادین نفتی استان خوزستان، زاگرس چین خورده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رسوب شناسی و سنگ شناسی رسوبی دانشگاه هرمزگان، بندرعباس

2 دانشیار گروه زمین شناسی دانشگاه هرمزگان

3 کارشناس ارشد زمین شناسی نفت شرکت توسعه مهندسی نفت، تهران

چکیده

سازند سروک یکی از مخازن مهم نفتی حوضه زاگرس است. در این پژوهش برای شناسایی ریزرخساره و شرایط ته نشینی و فرآیندهای دیاژنزی تعداد 150 مقطع نازک میکروسکوپی مورد ارزیابی قرار گرفت. از داده های تخلخل و تراویی برای تعیین واحدهای جریانی و تحلیل وضعیت مخزنی با روش پتروفیزیکی لوسیا استفاده شد. مطالعه پتروگرافی منجر به شناسایی 10 ریزرخساره متعلق به کمربندهای رخساره ای لاگون، پشته کربناته، رمپ میانی و رمپ خارجی گردید که در محیط رمپ کربناته تک شیب نهشته شده اند. مهمترین فرآیندهای دیاژنزی شناسایی شده مخزن سروک شامل سیمان شدگی، انحلال، دولومیت زایی، شکستگی و استیلولیت زایی هستند. حلیل داده‌های تخلخل- تراوایی با استفاده از شاخص FZI نیز منجر به شناسایی 3 واحد هیدرولیکی گردید. واحد HFU1 با ضعیف‌ترین وضعیت مخزنی به طور عمده با رخساره‌های لاگون و رمپ خارجی مشخص می شود و واحد مخزنی HFU2 و HFU3 دارای وضعیت مخزنی بهتری است و عمدتا دارای رخساره های کمربند رخساره ای لاگون، پشته کربناته و رمپ میانی هستند. بررسی وضعیت مخزنی بر مبنای تخلخل، تراوایی، شاخص کیفیت مخزن، شاخص زون جریان و توان مخزنی نشان داد وضعیت مخزنی سازند سروک در کلاس خوب تا خیلی خوب واقع می شود. همچنین برای هر کمربند رخساره‌ای نیز می توان بیان نمود که رخساره های لاگون و پشته کربناته دارای شاخص های مخزنی بهتری می باشند. وضعیت مخزنی متفاوت کمربندهای رخساره ای سازند سروک نشان از عملکرد توام فرآیندهای رسوبی و دیاژنزی و تاثیر پیچیده‌ بر روی توالی مخزن و پارامترهای مخزنی آن در منطقه مورد مطالعه داشته است.

کلیدواژه‌ها


Abbaszadeh, M., Fujii, H., Fujimoto, F., 1996. Permeability prediction by hydraulic flow units–theory and applications. SPE Formation Evaluation 11(4), 263-271. https://doi.org/10.2118/30158-PA
Ahr W.M., 2008. Geology of Carbonate Reservior. John Wiley and Sons. Inc,P. 277.
Alishavandi, Z., Rahimpour-Bonab, H., Kadkhodaei, A., Arian, M., 2018. Investigating the effects of sedimentary environment and diagenetic processes on the quality of Sarvak reservoir formation within a sequence stratigraphic framework, Kupal Oil Field. Journal of Geoscience 27(107), 277-286. https://doi.org/10.22071/gsj.2018.93509.1204  
Alsharhan, A.S., Nairn, A.E.M, Mohammed, A.A., 1993. Late Palaeozoic Glacial Sediments of the Southern Arabian Peninsula: Their Lithofacies and Hydrocarbon Potential. Marine and Petroleum Geology 10, 71-78. https://doi.org/10.1016/0264-8172(93)90101-W
Arthur, M.A., Schlanger, S.O., Jenkyns, H.C., 1987. The Cenomanian-Turonian Oceanic anoxic event, II, Palaeoceanographic controls on organic-matter production and preservation. Geol. Soci. Spec. Publ 26, 401 – 420. https://doi.org/10.1144/GSL.SP.1987.026.01.25
Bagheri, M., Rezaei, H., 2019. Reservoir rock permeability prediction using SVR based on radial basis function kernel. Carbonates and Evaporites 34(3), 699-707. https://doi.org/10.1007/s13146-019-00493-4
Baron, M., Parnell, J., Mark, D., Carr, A., Przyjalgowski, M., Feely, M., 2008. Evolution of Hydrocarbon Migrationstyle in a Fractured Reservoir Deduced from Fluid Inclusion Data, Clair Field, West of Shetland, UK. Marine and Petroleum Geology 25, 153-172. https://doi.org/10.1016/j.marpetgeo.2007.05.010     
Beiranvand, B., Ahmadi, A., Sharafodin, M., 2007. Mapping and classifying flow units in the upper part of the Mid-Cretaceous Sarvak Formation (Western Dezful embayment, South-west Iran), based on a determination of reservoir Rock Type. Journal of Petroleum Geology 30(4), 357-373. https://doi.org/10.1111/j.1747-5457.2007.00357.x
Belhouchet, H.E., Benzagouta, M.E., 2019. Rock Typing: Reservoir Permeability Calculation Using Discrete Rock Typing Methods (DRT): Case Study from the Algerian BH Oil Field Reservoir. Advances in Petroleum Engineering and Petroleum Geochemistry, Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018, Springer International Publishing. 9-12. https://doi.org/10.1007/978-3-030-01578-7_2
Cerepi, A., Barde, J.P., Labat, N., 2003. High-Resolution Characterization and Integrated Study of a Reservoir Formation: The Danian Carbonate Platform in the Aquitaine Basin (France). Marine Petroleum Geology 20, 1161-1183. https://doi.org/10.1016/j.marpetgeo.2003.09.005
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. The AAPG/Datapages Combined Publications Database. 108-121.
El Sharawy, M.S., Nabawy, B.S., 2016. Geological and petrophysical characterization of the lower Senonian Matulla formation in Southern and Central Gulf of Suez, Egypt. Arabian Journal for Science and Engineering 41(1), 281-300. https://doi.org/10.1007/s13369-015-1806-7
El Sharawy, M.S., Nabawy, B. S., 2019. Integration of electrofacies and hydraulic flow units to delineate reservoir quality in uncored reservoirs: A case study, Nubia Sandstone Reservoir, Gulf of Suez, Egypt. Natural Resources Research 28(4), 1587-1608. https://doi.org/10.1007/s11053-018-9447-7
Flugel, E., 2010. Microfacies of carbonate rocks. Springer-Verlag, Berlin, p.976.
Geel, T., 2000. Recognition of stratigraphic sequences in carbonat platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 211–238. https://doi.org/10.1016/S0031-0182(99)00117-0
Ghabeishavi, A., Vaziri-Moghaddam, H., Taheri, A., Taati, F., 2010. Microfacies and depositional environment of the Cenomanian of the Bangestan anticline, SW Iran. Journal of Asian Earth Sciences 37,275–285. https://doi.org/10.1016/j.jseaes.2009.08.014
Gholami Zadeh, P., Adabi M., 2011. Diagentic processes and geochemical variations of minor elementsat the Sarvak Formation in southerh of Iran. Journal of Stratigraphy and Sedimentology Researches 27(1), 51- 72. https://doi.org/20.1001.1.20087888.1390.27.1.4.0 
Guo, G., Diaz, M.A., Paz, F.J., Smalley, J., Waninger, E. A., 2007. Rock typing as an effective tool for permeability and water-saturation modeling: A case study in a clastic reservoir in the Oriente basin. Society of Petroleum Engineers Reservoir Evaluation & Engineering 10(6), 730-739. https://doi.org/10.2118/97033-PA
Hajikazemi, E., Al-Aasm, I.S., Mario, C., 2017. Diagenetic history and reservoir properties of the Cenomanian-Turonian carbonates in southwestern Iran and the Persian Gulf. Marine and Petroleum Geology 88, 845-857. https://doi.org/10.1016/j.marpetgeo.2017.06.035
Heydari, E., 1997. The role of burial diagenesis in hydrocarbon destruction and H2S accumulation, Upper Jurassic Smackover formation, Black Creek field, Mississipi: American Association of Petroleum Geologists Bulletin 81, 26-45. https://doi.org/10.1306/522B427B-1727-11D7-8645000102C1865D
Hollis, C., Vahrenkamp, V., Tull, S., Mookerjee, A., Taberner, C., Huang, Y., 2010. Pore system characterization in heterogeneous carbonates: an alternative approach to widely-used rock-typing methodologies. Marine Petroleum Geology 17(3), 272-293.  https://doi.org/10.1016/j.marpetgeo.2009.12.002
Hosseini, K., Rezaee, P., Kazem Shiroodi, S., 2020. Analysis of the electrofacies, flow units and assessment of the reservoir potential of the Mishrif Formation (Cenomanian-Turonian) in the Esfand oil field, Persian Gulf. Applied Sedimentology 8(15), 46-64. https://doi.org/10.22084/PSJ.2020.19710.1214   
James, G.A., Wynd, J.G., 1965. Stratigraphic nomenclature of Iranian oil- Journal of Science 307, 1064-1095. https://doi.org/10.1306/A663388A-16C0-11D7-8645000102C1865D
Jodeyri, R., Rahimpour Bonab, H., Tavakoli, V., Kadkhodaie-Ilkhchi, R., Yousefpour, M., 2017. Study of flow units and electrofacies in the Mishrif Formation (upper part of Sarvak Formation) and estimation of reservoir zone in Sirri Oilfields located in Persian Gulf. Applied Sedimentology 5(9), 86-98. https://doi.org/10.22084/PSJ.2017.12267.1126
Jooybari, A., Rezaie, P., 2017. Petrophysical evaluation of the Sarvak formation based on well logs in Dezful Embayment, Zagros Fold Zone, south west of Iran. Engineering, Technology & Applied Science Research 7(1), 1358-1362. ‏ https://doi.org/10.48084/etasr.982
Jooybari, S. A., Rezaei, P., & Mehdipour, M., 2022. Investigating the role of microfacies, depositional conditions and diagenesis on the quality of the reservoir section, Ilam Formation (Santonian-Campanian) in one of the fields in southwestern Iran, Dezful embayment. Iranian Journal of Petroleum Geology 21, 15-32. https://journal.ispg.ir/fa/Article/39683  
Khatir, R., Jahani, D., Aleali, M., Kohansal-Ghadimvand, N., 2021. Facies, sedimentary environment, diagenesis, and reservoir quality of the Sarvak Formation in the Darquain oil field, southwest of Iran. Applied Sedimentology 9(17) ,22833.1259. https://doi.org/10.22084/PSJ.2021.22833.1259
Khodaei, N., Rezaee, P., Honarmand, J., Abdollahi-Fard, I., 2021. Controls of depositional facies and diagenetic processes on reservoir quality of the Santonian carbonate sequences (Ilam Formation) in the Abadan Plain, Iran. Carbonates and Evaporites 36(2), 1-24. ‏https://doi.org/10.1007/s13146-021-00676-y
Lapponi, F., Casini, G., Sharp, I., Blendinger, W., Fernández, N., Romaire, I., Hunt D., 2011. From outcrop to 3D modelling: a case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran. Petroleum Geoscience 17,145-158. https://doi.org/10.1144/1354-079310-040
Lucia, F.J., 2007. Carbonate reservoir characterization: An integrated approach. Springer Berlin, P.366.
Malekzadeh, H., Daraei, M., Bayet-Goll, A., 2020. Field-scale reservoir zonation of the Albian–Turonian Sarvak Formation within the regional-scale geologic framework: A case from the Dezful Embayment, SW Iran. Marine and Petroleum Geology 121, 104586. https://doi.org/10.1016/j.marpetgeo.2020.104586
Mancinelli, A., 2006. Acroporella cairensi. sp. (Dasycladales) from the Barremian of Monte Cairo (southern Latium, Italy). Facies 52, 411-416. https://doi.org/10.1007/s10347-006-0047-3
Moradi, M., Tokhmechi, B., Masoudi, P., 2019. Inversion of well logs into rock types, lithofacies and environmental facies, using pattern recognition, a case study of carbonate Sarvak Formation. Carbonates and Evaporites 34(2), 335-347. https://doi.org/10.1007/s13146-017-0388-8
Moussavi-Harami, R., Rezaee, R., Kadkhodaie-Ilkhchi, R., Kadkhodaie -Ilkhchi, A., 2014. Analysis of the reservoir electrofacies in the framework of hydraulic flow units in the Whicher Range Field, Perth Basin, Western Australia. Journal of Stratigraphy and Sedimentology Researches 30(1), 1-22. https://doi.org/20.1001.1.20087888.1393.30.1.1.8
Nabawy, B.S., Al-Azazi, N.A.S.A. ,2015. Reservoir zonation and discrimination using the routine core analyses data: The Upper Jurassic Sab’atayn sandstones as a case study, Sab’atayn basin, Yemen. Arabian Journal of Geosciences 8(8), 5511-5530. https://doi.org/10.1007/s12517-014-1632-3
Nabawy, B.S., Barakat, M.K.H., 2017. Formation Evaluation using conventional and special core analyses: Belayim Formation as a case study, Gulf of Suez, Egypt. Arabian Journal of Geosciences 10(25), 1-23. https://doi.org/10.1007/s12517-016-2796-9
Nabawy, B.S., Basal, A.M.K., Sarhan, M.A., Safa, M.G., 2018. Reservoir zonation, rock typing and compartmentalization of the Tortonian-Serravallian sequence, Temsah Gas Field, offshore Nile Delta, Egypt. Marine and Petroleum Geology 92, 609-631. https://doi.org/10.1016/j.marpetgeo.2018.03.030  
Nabawy, B.S., Kassab, M.A .,2014. Porosity-reducing and porosity-enhancing diagenetic factors for some carbonate microfacies: a guide for petrophysical facies discrimination. Arabian Journal of Geosciences 7(11), 4523-4539. https://doi.org/10.1007/s12517-013-1083-2
Pakparvar, S., Ghadimvand, N. K., Jahani, D., 2017. Sarvak reservoir facies characteristics in one of the South West Field in Iran. Open Journal of Geology, 7(3), 279-294. https://doi.org/10.4236/ojg.2017.73020
Palma, R., lopez-Gomez, J., Piethe, R., 2007. Oxfordian ramp system (Lamanga Formation) in the Baradas Blancas area (Mendoza Province) Neaguen Basin, Argentina, facies an depositional sequences Sedimentary Geology 195, 113-134. https://doi.org/10.1016/j.sedgeo.2006.07.001
Pomar, L., 2001. Types of carbonate platforms: a genetic approach. Basin research 13(3), 313-334.‏ https://doi.org/10.1046/j.0950-091x.2001.00152.x 
Rahimpour-Bonab, H., Asadi-Eskandar, A. Sonei, A., 2009. Controls of Permian-Triassic Boundary over Reservoir Characteristics of South Pars Gas Field, Persian Gulf. Geological Journal 44, 341-364. https://doi.org/10.1002/gj.1148
Rahimpour-Bonab, H., Mehrabi, H., Navidtalab, A., Omidvar, M., Enayati-Bidgoli, A. H., Sonei, R. Izadi Mazidi, E., 2013. Palaeo exposure surfaces in Cenomanian–Santonian carbonate reservoirs in the Dezful embayment, SW Iran. Journal of Petroleum Geology 36(4), 335-362. https://doi.org/10.1111/jpg.12560
Rashid, F., Hussein, D., Lawrence, J. A., Khanaqa, P., 2020. Characterization and impact on reservoir quality of fractures in the Cretaceous Qamchuqa Formation, Zagros folded belt. Marine and Petroleum Geology 113, 104-117. ‏ https://doi.org/10.1016/j.marpetgeo.2019.104117
Read, J.F., 1985. Carbonate platform facies models. The AAPG/Datapages Combined Publications Database 69, 1-21. https://doi.org/10.1306/AD461B79-16F7-11D7-8645000102C1865D
Rebelle, M., Umbhauer, F., Poli, E., 2009. Pore to Grid Carbonate Rock-Typing. International Petroleum Technology Conference, International Petroleum Technology Conference. https://doi.org/10.2523/IPTC-13120-MS
Rezaie, P., Jooybari, A., Pour, M.M., Gorbani, M., 2016. Factor Controlling Reservoir Properties and Flow Unit Determination in the Ilam Formation of Dezfol Embayment at Zagros Fold-Thrust Belt, Southwest of Iran. Open Journal of Geology, 6(07), 660. https://doi.org/10.4236/ojg.2016.67051  
Riazi, Z., 2018. Application of integrated rock typing and flow units identification methods for an Iranian carbonate reservoir. Journal of petroleum science and engineering 160, 483-497. https://doi.org/10.1016/j.petrol.2017.10.025
Ross, D. J., Skelton, P.W., 1993. Rudist formations of the Cretaceous: a palaeoecological, sedimentological and stratigraphical review. Sedimentology review 1, 73-91. https://doi.org/10.1002/9781444304534.ch ‏      
Sabouhi, M., Rezaee, P., 2019. Investigation of hydraulic flow units of carbonate shoal reservoir facies of Kangan formation (early triassic) and its relationship with depositional environment and diagenesis. Applied Sedimentology 7(13), 167-183. https://doi.org/10.22084/PSJ.2022.25804.1341
Sabouhi, M., Rezaee, P., Khatibi, S., 2020. An integrated approach to distribute carbonate reservoir properties, using lithofacies and seismic attributes: a case study from SW of Iran. Carbonates and Evaporites 35(4), 1-18. https://doi.org/10.1007/s13146-020-00649-7 ‏
Shahverdi, N., Rahimpour-Bonab, H., Kamali, M., 2015. Sedimentary Environment, Diagenesis, and Reservoir Quality of Sarvak Formation (Upper Part) in Siri (E) Oilfields. Journal of Petroleum Research 25(84), 99-114. https://doi.org/10.22071/gsj.2016.41161
 Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P., Horbury A.D., Simmons, M. D., 2001. Arabian plate sequence stratigraphy. Geo-Arabia Special Publication 2, 371. https://doi.org/10.2113/geoarabia0901199
Sherkati, S., Letouzey, J., 2004. Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Marine and petroleum geology 21(5), 535-554. ‏ https://doi.org/10.1016/j.marpetgeo.2004.01.007
Taghavi, A.A., Mørk, A., Emadi, M.A., 2006. Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran. Petroleum Geoscience 12(2), 115-126. https://doi.org/10.1144/1354-079305-672  ‏
Teh, W.J., Willhite, G.P., Doveton, J.H., 2012. Improved reservoir characterization using petrophysical classifiers within electrofacies, SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers. https://doi.org/10.2118/154341-MS
Wilson, J., 1975. Carbonate Facies in Geological History. Springer, Berlin. p. 471.
Zhang, J., Qin, L., Zhang, Z., 2008. Depositional facies, diagenesis and theirimpact on the reservoir quality of Silurian sandstones from Tazhong area incentral Tarim Basin, western China: Journal of Asian Earth Sciences 33, 42-60. https://doi.org/10.1016/j.jseaes.2007.10.021