ضریب توزیع زیرکن/سنگ کل عناصر نادر خاکی در سنگ های اسیدی منطقه درگز، کاربردی برای تعیین فوگاسیته اکسیژن و دمای تبلور زیرکن

نوع مقاله : مقاله پژوهشی

نویسنده

گروه ژئوشیمی، دانشکده علوم زمین، دانشگاه خوارزمی، ایران

چکیده

این تحقیق بر روی ضریب توزیع زیرکن/سنگ کل عناصر نادر خاکی در سنگ های اسیدی منطقه درگز، واقع در بخش میانی مجموعه افیولیتی کهنوج، به منظور تعیین فوگاسیته اکسیژن و دمای تشکیل زیرکن طراحی شده است. ضریب توزیع زیرکن/سنگ کل در سه نوع تیپ سنگ اسیدی شامل توده های پلاژیوگرانیتی، دایک های پلاژیوگرانیتی و دایک های گرانیتی (دو نمونه از هر نوع سنگ) در منطقه درگز تعیین شده است. نتایج ضریب توزیع زیرکن/سنگ کل عناصر نادر خاکی بدست آمده بر اساس ترکیب شیمی سنگ کل و شیمی بلورهای زیرکن نشان داد که الگوهای عناصر فرعی در بلورهای زیرکن توسط سیال در زمان تبلور کنترل شده و از نوع ماگمایی هستند. ضریب توزیع زیرکن/سنگ کل نشان داد که از عناصر نادر خاکی تهی شده و غنی شدگی در عناصر نادر خاکی سنگین دارند که مطابق با سنگ میزبان و زیرکن های ماگمایی است. دمای بدست آمده بر اساس محتوی تیتانیوم در زیرکن در محدوده 707 تا 1046 درجه سانتیگراد بدست آمده است. دمای تبلور زیرکن، فوگاسیته اکسیژن و نسبت‌های Ce4+/Ce3+ از توده های پلاژیوگرانیتی به سمت دایک های پلاژیوگرانیتی کاهش یافته که نشان می دهد توده های پلاژیوگرانیتی از ذوب بخشی آبدار تجمعات گابرو بدست آمده و در ادامه آن دایک های پلاژیوگرانیتی به وسیله تفریق بیشتر مذاب فلسیک تولید شده توسط ذوب بخشی حاصل شده است. در پایان دایک های گرانیتی از تفریق مذاب اسیدی احتمالاً حاصل شده از ذوب بخشی رسوبات تشکیل شده اند.

کلیدواژه‌ها


Arvin, M., Babaei, A.A., Ghadami, Gh, Dargahi, S., Shakerardekani, A.R., 2005. The origin of the Kahnuj ophiolitic complex, SE of Iran: Constraints from whole rock and mineral chemistry of the Bande-Zeyarat gabbroic complex. Ofioliti 30 (2), 1–14. https://doi.org/10.4454/ofioliti.v30i1.236
Ballard, J.R., Palin, M.J., Campbell, I.H., 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contribution to Mineralogy and Petrology 144, 347–364. https://doi.org/10.1007/s00410-002-0402-5
Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. Journal of Petrology 47, 329–353. https://doi.org/10.1093/petrology/egi077
Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I.I., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contribution to Mineralogy and Petrology 143, 602–622. https://doi.org/10.1007/s00410-002-0364-7
Blundy, J.D., Wood, B.J., 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372, 452–454. https://doi.org/10.1038/372452a0
Cabral, A.R., Zeh, A., 2015. Detrital zircon without detritus: a result of 496 Ma-old fluid–rock interaction during the gold-lode formation of Passagem, Minas Gerais, Brazil. Lithos 212–215, 415–427. https://doi.org/10.1016/j.lithos.2014.10.011
Carmichael, I.S.E., 1991. The redox states of basic and silicic magmas: a reflection of their source regions? Contribution to Mineralogy and Petrology 106, 129–141. https://doi.org/10.1007/BF00306429
Claiborne, L.L., Miller, C.F., Walker, B.A., Wooden, J.L., Mazdab, F.K., Bea, F., 2006. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineralogy Magazine 70, 517–543. https://doi.org/10.1180/0026461067050348
Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of zircon textures. Review in Mineralogy and Geochemistry 53, 469–500. https://doi.org/10.2113/0530469
Dorani, M., Arvin, M., Oberhansli, R., Dargahi, S., 2017. P-T evolution of metapelites from the Bajgan complex in the Makran accretionary prism, southeastern Iran. Chemie der Erde 77, 459–475. https://doi.org/10.1016/j.chemer.2017.07.004
El-Bialy, M.Z., Ali, K.A., 2013. Zircon Trace Element Geochemical Constraints on the Evolution of the Ediacaran (600–614 Ma) Post-Collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian-Nubian Shield. Chemical Geology 360/361, 54–73. https://doi.org/10.1016/j.chemgeo.2013.10.009
Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contribution to Mineralogy and Petrology 154, 429–437. https://doi.org/10.1007/s00410-007-0201-0
Gerlach, D.C., Leeman, W.P., Avé Lallemant, H.G., 1981. Petrology and geochemistry of plagiogranite in the Canyon Mountain ophiolite, Oregon. Contribution to Mineralogy and Petrology 77, 82–92. https://doi.org/10.1007/BF01161505
Ghasemi Siani, M., Mehrabi, M., Karimi Shahraki, B., Khierabadi, A., 2018. Geology, petrography and geochemistry of ultramafic-mafic rocks and associated mineralization at Dar Gaz anomaly (Kahnuj Ophiolotic Complex), Iranian journal of Petrology 34, 139–162. (in Persian with English abstract). https://doi.org/10.22108/ijp.2018.111638.1089
Ghasemi Siani, M., Mehrabi, M., Neubauer, F., Cao, Sh., 2021b. Trace element geochemistry of zircons from the Kahnouj ophiolite: Implications for petrogenesis and geodynamic setting. Arabian Journal of Geosciences 14, 1377. https://doi.org/10.1007/s12517-021-07575-5.
Ghasemi Siani, M., Mehrabi, M., Neubauer, F., Cao, Sh., Lentz, D.R., 2021a. Geochronology, geochemistry, and origin of plagiogranitic rocks and related granitic dikes in the Dar Gaz district, Kahnouj ophiolite complex, SE Iran: Analysis of their petrogenesis in a back-arc tectonic setting. Lithos 380–381. https://doi.org/10.1016/j.lithos.2020.105832.
Ghasemi Siani, M., Ebrahimi Fard, H., 2021. Geothermobarometry of Fe-Ti hosted gabbroid rocks in the Dar Gaz district (Kahnouj Ophiolitic Complex). Journal of Economic Geologym https://doi.org/ 10.22067/econg.2021.69934.1016.
Ghazi, A.M., Hassanipak, A.A., Mahoney, J.J., Duncan, R.A., 2004. Geochemical characteristics, 40Ar–39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran. Tectonophysics 393, 175–196. https://doi.org/10.1016/j.tecto.2004.07.035
Grimes, C.B., John, B.E., Cheadle, M.J., Mazdab, F.K., Wooden, J.L., Swapp, S., Schwartz, J.J., 2009. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology 158, 757–783. https://doi.org/10.1007/s00410-009-0409-2
Harrison, T.M., Watson, E.B., Aikman, A.B., 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology 35, 635–638. https://doi.org/10.1130/G23505A.1
Hassanipak, A.A., Ghazi, A.M., Wampler, J.M., 1996. Rare earth element characteristics and K-Ar ages of the Band Ziarat ophiolite complex, southeastern Iran. Canadian Journal of Earth Sciences 33, 1534–1542. https://doi.org/10.1139/e96-116
Hofmann, A.E., Baker, M.B., Eiler, J.M., 2014. Sub-micron-scale trace element distributions in natural zircons of known provenance: implications for Ti-in-zircon thermometry. Contribution to Mineralogy and Petrology 168, 1057. https://doi.org/10.1007/s00410-014-1057-8
Hoskin, P.W.O., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta 69, 637–648. https://doi.org/10.1016/j.gca.2004.07.006
Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53, 27–62. https://doi.org/10.2113/0530027
Kananian, A., 2001. Petrology and geochemistry of Kahnuj ophiolitic complex. Ph.D Thesis, Tarbiat Modarres University, Tehran, 252p (in Persian).
Kananian, A., Juteau, T., Bellon, H., Darvishzadeh, A., Sabzehi, M., Whitechurch, H., Ricou, L.E., 2001. The ophiolite massif of Kahnuj (western Makran, southern Iran): new geological and geochronological data. Earth and Planetary Sciences, 332, 543–552. https://doi.org/10.1016/S1251-8050(01)01574-9
Karimi Shahraki, B., Ghasemi Siani, M., Golizadeh, K., 2019. Fe-Ti oxide minerals geothermometry and oxygen fugacity at the Dar Gaz anomaly, Kahnuj, Kharazmi Journal of Earth Sciences 5, 79–98. (in Persian with English abstract).
Li, W.K., Cheng, Y.Q., Yang, Z.M., 2019. Geo-fO2: Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geochemistry, Geophysics, Geosystems 20. https://doi.org/10.1029/2019GC008273
McCall, G.J.H., 1997. The geotectonic history of the Makran and adjacent areas of the southern Iran. Journal of Asian Earth Sciences 15, 517–531. https://doi.org/10.1016/S0743-9547(97)00032-9
Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31, 529–532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
Nardi, L.V.S., Formoso, M.L.L., Müller, I.F., Fontana, E., Jarvis, K., Lamarão, C., 2013. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chemical Geology 335, 1–7. https://doi.org/10.1016/j.chemgeo.2012.10.043
Nasdala, L., Hanchar, J.M., Rhede, D., Kennedy, A.K., Váczi, T., 2010. Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chemical Geology 269, 290–300. https://doi.org/10.1016/j.chemgeo.2009.10.004
Pettke, T., Audetat, A., Schaltegger, U., Heinrich, C.A., 2005. Magmatic-to hydrothermal crystallization in the W-Sn mineralized mole granite (NSW, Australia) –part II: evolving zircon and thorite trace element chemistry. Chemical Geology 220,191–213. https://doi.org/10.1016/j.chemgeo.2005.02.017
Rubatto, D., Hermann, J., 2007. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology 241, 38–61. https://doi.org/10.1016/j.chemgeo.2007.01.027
Schaltegger, U., 2007. Hydrothermal zircon. Elements 3, 51. https://doi.org/10.2113/gselements.3.1.51
Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of inter-atomic distances in halides and chaleogenides. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 32, 751–767. https://doi.org/10.1107/S0567739476001551
Smythe, D.J., Brenan, J.M., 2016. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth and Planetary Science Letters 453, 260–266. https://doi.org/10.1016/j.epsl.2016.08.013
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts. Implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 313–345. https://doi.org/ 10.1144/GSL.SP.1989.042.01.19
Trail, D., Watson, E.B., Tailby, N.D., 2011. The oxidation state of Hadean magmas and implications for early Earth's atmosphere. Nature 480, 79–82. https://doi.org/10.1038/nature10655
Trail, D., Watson, E.B., Tailby, N.D., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta 97, 70–87. https://doi.org/10.1016/j.gca.2012.08.032
Virgo, D., Mysen, B.O., Kushiro, I., 1980. Anionic constitution of 1-atmosphere silicate melts: implications for the structure of igneous melts. Science 20, 1371–1373. https://www.jstor.org/stable/1684073
Wang, X., Griffin, W.L., Chen, J., 2010. Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal 44, 65–72. https://doi.org/10.2343/geochemj.1.0043
Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. Contribution to Mineralogy and Petrology 151, 413–433. https://doi.org/10.1007/s00410-006-0068-5
Zeh, A., Gerdes, A., Will, T.M., Frimmel, H.E., 2010. Hafnium isotope homogenization during metamorphic zircon growth in amphibolite-facies rocks: examples from the Shackleton Range (Antarctica). Geochimica et Cosmochimica Acta 74, 4740–4758. https://doi.org/10.1016/j.gca.2010.05.016