Application of fractal modeling and delineation of hydrothermal alterations in the separation of Zn, Pb, Cu, and Ba anomalies in Varcheh 1: 100000 sheet (south of Arak)

Authors

1 Soil conservation and watershed managment Department. Lorestan Agricultural and Natural Research and Education Center, AREEO, Khoramabad, Iran

2 geology department , science faculty of lorestan university

3 Department of Geology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran

Abstract

Fractal modeling is a useful tool for classifying various natural phenomena. Fractal methods evaluate relationships between all parameters, such as geochemical data and spatial distribution, without any data normalization. For this reason, fractal models are more exact and closer to reality. In this study, 1292 samples of Stream sediments on the 1:100000 geological sheet of Varcheh in the south of Arak were surveyed for geochemical exploration and analyzed by the ICP-MS method to detect 15 elements. The statistical parameters of Zn, Pb, Cu, and Ba, and histograms for these 15 elements showed a right-skewed distribution. In this case, the fractal method is among the best techniques for separating anomalies from the background. The element data were analyzed by the concentration-number (C-N) fractal method and then matched to alteration zones and faults plotted by ASTER multispectral imagery to detect minerals. The C-N fractal diagram was plotted for Zn, Pb, Cu, and Ba, and the most intensive anomalies for these elements have a grade greater than 524.8, 794.3, 223.9, and 944.1, respectively. Integrating the anomaly maps for Zn, Pb, Cu, and Ba with iron oxide, proplytic, argillic, and silicic alterations, fault maps, and the maps of mines and Varcheh mineral indices showed that the metal mines have mainly occurred in regions with a high fault density. The separated Pb and Zn anomalies are consistent and related to high fault and fracture density regions. They are also highly correlated with the silicic alteration plotted in the region.

Keywords


Afzal, P., Alghalandis, Y.F., Khakzad, A., Moarefvand, P., Omran, N.R., 2011. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration 108(3), 220–232.  https://doi.org/10.1016/j.gexplo.2011.03.005
Afzal, P., Heidari, S.M., Ghaderi, M., Yasrebi, A.B., 2017. Determination of mineralization stages using correlation between geochemical fractal modeling and geological data in Arabshah sedimentary rock-hosted epithermal gold deposit, NW Iran. Ore Geology Reviews 91, 278–295. https://doi.org/10.1016/j.oregeorev.2017.09.021
Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zarifi, A.Z., Foster, P., Yasrebi, A.B., 2016. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. Journal of African Earth Sciences 119, 139–149. https://doi.org/10.1016/j.jafrearsci.2016.03.009
Afzal, P., Harati, H., Fadakar Alghalandis, Y., Yasrebi, A.B., 2013. Application of Spectrum-Area Fractal Model to Identify of Geochemical Anomalies Based on Soil Data in Kahang Porphyry-Type Cu Deposit, Iran. Geochemistry 73(4), 533–543. https://doi.org/10.1016/j.chemer.2013.08.001
Afzal, P., Jebeli, M., Pourkermani, M., Jafari Rad, A., 2018. Correlation between rock types and Copper mineralization using fractal modeling in Kushk-e-Bahram deposit, Central Iran. Geopersia 8, 131–141. https://doi.org/10.22059/geope.2017.237332.648334
Agterberg, F.P., 1995. Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review 37, 1–8. https://doi.org/10.1080/00206819509465388
Agterberg, F.P., Cheng, Q., Wright, D.F., 1993. Fractal modeling of mineral deposits. In: Elbrond J, Tang, X (Eds.). 24th APCOM symposium proceeding, Montreal, Canada, 43–53.
Ahmadfaraj, M., Mirmohammadi, M., Afzal, P., 2016. Application of fractal modeling and PCA method for hydrothermal alteration mapping in the Saveh area (Central Iran) based on ASTER multispectral data. International Journal of Mining and Geo-Engineering 50, 37–48. https://doi.org/10.22059/ijmge.2016.57307
Ahrens, L.H., 1954. The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary). Geochimica et Cosmochimica Acta 5, 49–73. https://doi.org/10.1016/0016-7037(54)90040-X
Ali, A., Pour, A., 2014. Lithological mapping and hydrothermal alteration using Landsat 8 data: A case study in Ariab mining district, red sea hills, Sudan. International Journal of Basic Applied Sciences 3, 199–208. https://doi.org/10.14419/ijbas.v3i3.2821
Bai, J., Porwal, A., Hart, C., Ford, A., Yu, L., 2010. Mapping geochemical singularity using multifractal analysis: Application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. Journal of Geochemical Exploration 104, 1–11. https://doi.org/10.1016/j.gexplo.2009.09.002
Pour, A.B., Hashim, M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits.Ore Geology Review. 44, 1–9. https://doi.org/10.1016/j.oregeorev.2011.09.009
Carranza, E.J.M., 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews 35, 383–400. https://doi.org/10.1016/j.oregeorev.2009.01.001
Carranza, E.J.M., 2010. From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resource Geology 61, 30–51. https://doi.org/10.1111/j.1751-3928.2010.00146.x
Carranza, E.J.M., Owusu, E., Hale, M., 2009. Mapping of prospectivity and estimation of number of undiscovered prospects for lode-gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita 44, 915–938. https://doi.org/10.1007/s00126-009-0250-6
Carranza E.J.M., Sadeghi M., 2010. Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geology Reviews 38, 219–241. https://doi.org/10.1016/j.oregeorev.2010.02.003
Carranza, E.J.M., 2008. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Vol. 11, Elsevier, Amsterdam, 351 p.
Cheng, Q., Agterberg, F.P., 1996 Multifractal modeling and spatial statistics. Mathematical Geology 28, 1–16. https://doi.org/10.1007/BF02273520
Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S., Righini, G., 2013. Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arabian Journal Geosciences 6, 4529–4546. https://doi.org/10.1007/s12517-012-0725-0
Cox, D.P., Singer, D.A., 1986. Mineral deposit models. U.S. Geological Survey Bulletin 1693, 1-10. https://doi.org/10.3133/b1693
 Daneshfar, B., Desrochers, A., Budkewitsch, P., 2006. Mineral-potential mapping for MVT deposits with limited data sets using Landsat data and geological evidence in the Borden basin, Northern Baffin Island, Nunavut, Canada. Natural Resources Research 15, 129–149. https://doi.org/10.1007/s11053-006-9020-7
Daneshvar Saein, L., 2017. Delineation of enriched zones of Mo, Cu and Re by concentration-volume fractal model in Nowchun Mo-Cu porphyry deposit, SE Iran. Iranian Journal of Earth Sciences 9, 64–72.
Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q., Liu, H., 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration 105, 95–105. https://doi.org/10.1016/j.gexplo.2010.04.005
Di Tommaso, I., Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews 32(1), 275–90. https://doi.org/10.1016/j.oregeorev.2006.05.004
Drury, S., 2001. Image interpretation in geology. Cheltenham Malden: Nelson Thornes Blackwell Science, 290 p.
Ducart, D.F., Silva, A.M., Toledo, C.L.B., Assis, L.M.d., 2016. Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province. Brazilian Journal of Geology 46, 331–349. https://doi.org/10.1590/2317-4889201620160023
Farahmandfar, Z., Jafari, M.R., Afzal, P., Ashja Ardalan, A., 2020. Description of gold and copper anomalies using fractal and stepwise factor analysis according to stream sediments in NW Iran. Geopersia 10(1), 135–148. https://doi.org/10.22059/geope.2019.265535.648413
Gahlan, H., Ghrefat, H., 2018. Detection of gossan zones in arid regions using Landsat 8 OLI data: Implication for mineral exploration in the eastern Arabian shield, Saudi Arabia. Natural Resources Research 27, 109–124. https://doi.org/10.1007/s11053-017-9341-8
Hassanpour, S., Afzal, P., 2013. Application of concentration-number (C-N) multifractal modelling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences 6, 957–970. https://doi.org/10.1007/s12517-011-0396-2
Hawkes, H. E., Webb, J. S., 1979. Geochemistry in mineral exploration, 2end eds. Academic Press, New York 657 p.
Heidari, M., Ghaderi, M., Afzal, P., 2013. Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au-Ag (Cu) deposit, NW Iran. Applied Geochemistry 31, 119–132.  https://doi.org/10.1016/j.apgeochem.2012.12.014
Hitzman, M.W., Oreskes, N., and Einaudi, M.T., 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-LREE) deposits: Precambrian Research 58, 241–287. https://doi.org/10.1016/0301-9268(92)90121-4
Hassani, S.A., 2013. Lithogeochemical, stream sediments and hydrogeochemical studies using classical and fractal statistical methods in Alut 1:100000 sheet (Kurdistan). M.Sc. thesis. University of Islamic Azad University, Khoramabad (in Persian with English abstract).
Hosseini, S.A., Afzal, P., Sadeghi, B., Sharmad, T., Shahrokhi, S.V., Farhadinejad, T., 2015. Prospection of Au mineralization based on stream sediments and lithogeo-chemical data using multifractal modeling in Alut 1:100,000 sheet, NW Iran. Arabian Journal of Geoscience 8, 3867–3879. https://doi.org/10.1007/s12517-014-1436-5
Jaafari, M.A., Kananian, A., Nazarpour, A., 2019. Discrimination of Pb and Zn metals geochemical anomalies using classical statistical (Mean+nSTEV), singularity index, remote sensing and structural factors method in Khondob 1:100000 sheet, northern part of Malayer-Aligoudarz-Esfahan Zone. Journal of Advanced Applied Geology 9(3), 341–56. https://doi.org/10.22055/aag.2019.28425.1937
Afzal, P., Jebeli, M., Pourkermani, M., Jafari Rad, A., 2018. Correlation between rock types and Copper mineralization using fractal modeling in Kushk-e-Bahram deposit, Central Iran. Geopersia 8, 131–141. https://doi.org/10.22059/geope.2017.237332.648334
Kan, H., London, S.J., Chen, G., Zhang, Y., Song, G., Zhao, N., Jiang, L., Chen, B., 2007. Differentiating the effects of fine and coarse particles on daily mortality in shanghai, China. Environment International. 33, 376-384. https://doi.org/10.1016/j.envint.2006.12.001
Karimpour, M.H., Malekzadeh, A., Haidarian, M.R., 2012. Ore deposit exploration, geology, geochemistry, satellite and geophysics models, 2end edition, Ferdowsi University of Mashhad p. 632(in Persian).
Khalili, H., Afzal, P., 2018. Application of spectrum-volume fractal modeling for detection of mineralized zones. Journal of Mining and Environment 9, 371–378. https://doi.org/10.22044/jme.2018.6285.1451
Kholghi, M., 2004. Geological map of the Varcheh 1:100000 sheet. Geological Survey and Mineral Exploration of Iran.
Kouhestani, H., Ghaderi, M., Afzal, P., Zaw, K., 2020. Classification of pyrite types using fractal and stepwise factor analyses in the Chah zard gold-silver epithermal deposit, Central Iran. Geochemistry: Exploration, Environment, Analysis 20, 496–508. https://doi.org/10.1144/geochem2020-031
Li, C., Ma, T., Shi, J., 2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77, 167–175. https://doi.org/10.1016/S0375-6742(02)00276-5
Lima, A., De Vivo, B., Cicchella, D., Cortini, M., Albanese, S., 2003. Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of (Italy), Campania region, Applied Geochemistry 18, 1853-1865. https://doi.org/10.1016/S0883-2927(03)00083-0
Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. W.H. Freeman, New York 468 p.
Monecke, T., Monecke, J., Herzig, P.M., Gemmell, J.B., Monch, W., 2005. Truncated fractal frequency distribution of element abundance data: a dynamic model for the metasomatic enrichment of base and precious metals, Earth and Planetary Science Letters 232, 363–378. https://doi.org /10.1016/j.epsl.2005.01.033
Moradi, R., Boomeri, M., 2017. Remote sensing detection of altered zones associated with Cu-Mo mineralization in north of Zahedan, SE Iran using Landsat-8 data. Yerbilimleri 38(3), 275–294. https://dergipark.org.tr/en/pub/yerbilimleri/issue/39251/462194
Mirhosseini Moosavi, S., Almasian, M., 2012. Application of different image processing techniques on ETM+ images for study of Zendan-Minab fault system. Journal of Earth 24, 107–123 (in Persian with English abstract).
Nazarpour, A., 2018. Application of C-A fractal model and exploratory data analysis (EDA) to delineate geochemical anomalies in the: Takab 1:25,000 geochemical sheet, NW Iran. Iranian Journal of Earth Sciences 10, 173-180.
Nazarpour, A., Sadeghi, B., Sadeghi, M., 2015. Application of fractal models to characterization and evaluation of vertical distribution of geochemical data in Zarshuran gold deposit, NW Iran. Journal of Geochemical Exploration 148, 60-70. https://doi.org/10.1016/j.gexplo.2014.08.007
Rahmati, A., Afzal, P., Abrishamifar, S.A., Sadeghi, B., 2015. Application of concentration–number and concentration–volume fractal models to delineate mineralized zones in the Sheytoor iron deposit, Central Iran. Arabian Journal of Geosciences 8(5), 2953–2965. https://doi.org/10.1007/s12517-014-1330-1
Ranjbar, H., Honarmand, M., and Moezifar, Z., 2004. Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the southern part of the Iranian volcanic sedimentary belt. Journal of Asian Earth Sciences 24, 237–243. https://doi.org/10.1016/j.jseaes.2003.11.001
Rowan, L.C., Goetz, A.F.H., Ashley, R.P., 1977. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics 42(3), 522–535. https://doi.org/10.1190/1.1440723
 Saadati, H., Afzal, P., Torshizian, H., Solgi, A., 2020. Geochemical exploration for lithium in NE Iran using the geochemical mapping prospectivity index, staged factor analysis, and a fractal model. Geochemistry: Exploration, Environment, Analysis 20(4), 461. https://doi.org/10.1144/geochem2020-020
Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews 14, 157–183. https://doi.org/10.1016/S0169-1368(99)00007-4
Sabins, F.F., 1997. Remote Sensing-Principles and Interpretation, third ed. W.H. Freeman and Co, New York. 361p.
Sadeghi B., Khalajmasoumi, M., Afzal, P., Moarefvand, P., Yasrebi, A.B., Wetherelt, A., Foster, P., Ziazarifi, A., 2013. Using ETM+ and ASTER sensors to identify iron occurrences in the Esfordi 1:100000 mapping sheet of Central Iran. Journal of African Earth Sciences 85, 103–114.
Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A.B., Saein, L.D., 2012. Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration 122, 9–19. https://doi.org/10.1016/j.gexplo.2012.04.011
Shamseddin Meigoony, M., Afzal, P., Gholinejad, M., Yasrebi, A.B., Sadeghi, B., 2014. Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1:100,000 sheet, Central Iran. Arabian Journal of Geosciences 7, 5333–5343. https://doi.org/10.1007/s12517-013-1074-3
Sharokhi, S.V., Zarei sahamieh, R., 2013. Geochemical and mineral chemistry study of granitoids north of Aligudarz, Astaneh   and north of Boroujerd (west of Iran). Journal of Earth 8, 30. (in Persian with English abstract).
Shayestehfar, M.R., Zarrabi, A., Sharafi, A., Yazdi, A., 2006. Petrology, petrography and mineralographical studies of “Choghart Iron Ore Mine”, Bafgh area, Iran. Geochimica et Cosmochimica Acta 70, A578. https://doi.org/10.1016/j.gca.2006.06.1072
Stöcklin, J., 1968. Structural history and tectonics of Iran: A review. American Association of Petroleum Geologists Bulletin 52, 1229–1258.
Turcotte, D.L., 1997. Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge 398 p.
Wang, G., Zhang, S., Yan, C., Song, Y., Sun, Y., Li, D., Xu, F., 2011. Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region, China. Computers & Geosciences 37, 1976–1988. https://doi.org/10.1016/j.cageo.2011.05.007
Yasrebi, A.B., Hezarkhani, A., 2019. Resources classification using fractal modelling in Eastern Kahang Cu-Mo porphyry deposit, Central Iran. Iranian Journal of Earth Sciences 11, 56–67. https://doi.org/10.30495/ijes.2019.544596
Zhang, D., Cheng, Q., Agterberg, F., Chen, Z., 2016. An improved solution of local window parameters setting for local singularity analysis based on Excel VBA batch processing technology. Computers and Geosciences 88, 54–66. https://doi.org/10.1016/j.cageo.2015.12.012
Zuo, R., Wang, J., 2020. ArcFractal: An ArcGIS Add-In for Processing Geoscience Data Using Fractal/Multifractal Models. Natural Resources Research 29, 3–12. https://doi.org/10.1007/s11053-019-09513-5
Zuo, R., Agterberg, F.P., Cheng, Q., Yao, L., 2009b. Fractal characterization of the spatial distribution of geological point processes. International Journal of Applied Earth Observation and Geoinformation 11(6): 394–402. https://doi.org/10.1016/j.jag.2009.07.001
Zuo, R., Cheng, Q., Xia, Q., 2009a. Application of fractal models to characterization of vertical distribution of geochemical element concentration. Journal of Geochemical Exploration 102(1), 37–43. https://doi.org/10.1016/j.gexplo.2008.11.020