Study of deformation pattern and kinematic characteristics in the Gelmandeh metamorphic complex, Saghand region, Central Iran

Authors

1 Department of Earth Sciences, Shiraz University, Shiraz, Iran

2 Fars Education Organization, Shiraz, Iran

Abstract

َAbstract:

Study of deformation pattern and kinematic characteristics in the Gelmandeh metamorphic complex, Saghand region, Central Iran

َAbstract:

The Golmandeh Metamorphic Complex is located in the Central East Iranian Microcontinent. In this research, structural and microstructural studies have been performed to determine the nature of the deformation in the Golmandeh metamorphic complex. The presence of microstructures such as mica fish, rotating porphyroclasts, and the S/C structure all indicate the top-to-northeast sense of shear. Based on the dynamic recrystallization studies, the deformation temperature in the Golmandeh Metamorphic Complex is estimated between 500 and 650° C. This condition correspond to amphibolite metamorphic facies. Using the Rigid Grain Net (RGN) method, the mean kinematic vorticity number was estimated to be 0.75. Based on the results of kinematic studies, the deformation regime in the Golmandeh Metamorphic Complex was determined as a general shear with contribution of 55% simple shear and 45% pure shear component.

Keywords


Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin 103, 983-992. http://dx.doi.org/10.1130/0016-7606(1991)103%3C0983:SASCOT%3E2.3.CO;2.
Altenberger, U., 2000. Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs, Norway. Tectonophysics 320, 107–121. http://dx.doi.org/10.1016/S0040-1951(00)00048-2.
Armstrong, R.L., 1982. Cordilleran metamorphic core complexes; from Arizona to southern Canada. Annual Review of Earth and Planetary Sciences 10, 129-154. http://dx.doi.org/10.1146/annurev.ea.10.050182.001021.
Bailey, C.M., Eyster, E.L., 2003. General shear deformation in the Pinaleno Mountains metamorphic core complex, Arizona. Journal of Structural Geology 25, 1883–1892. http://dx.doi.org/10.1016/S0191-8141(03)00044-0.
Bailey, C.M., Francis, B. E., Fahrney, E., 2004. Strain and vorticity analysis of transpressional high-strain zones from the Virginia Piedmont, USA. Geological Society 224, 249-264. http://dx.doi.org/10.1144/GSL.SP.2004.224.01.16.
Buck, W.R., 1991. Modes of continental lithospheric extension. Solid Earth 96, 20161-20178. http://dx.doi.org/10.1029/91JB01485.
Ceriani, S., Mancktelow, N.S., Pennacchioni, G., 2003. Analogue modelling of the influence of shape and particle/matrix interface lubrication on the rotational behavior of rigid particles in simple shear. Journal of Structural Geology 25(12), 2005-2021. http://dx.doi.org/10.1016/S0191-8141(03)00098-1.
Chew, D.M., 2003. An Excel spreadsheet for finite strain analysis using the Rf /Ф technique. Computers and Geosciences 29, 795–799. http://dx.doi.org/10.1016/S0098-3004(03)00027-X.
Crittenden, M.D., 1980. Metamorphic core complexes of the North American Cordillera: Summary. In: Crittenden, M.D., Coney, P.J., Davis, G.H. (Eds.), Cordilleran metamorphic core complexes. Geological Society of America Memoir 153, 485-490.  https://doi.org/10.1130/MEM153-p485.
Dehghan, M., 2020. Microstructural Analysis of the metamorphic rocks in the Gelmandeh metamorphic complex, Central Iran. M.Sc. thesis, Shiraz University, Shiraz, Iran.
Faghih, A., Soleimani, M., 2015. Quartz c-axis fabric development associated with shear deformation along an extensional detachment shear zone: Chapedony Metamorphic Core Complex, Central-East Iranian Microcontinent. Journal of Structural Geology 70, 1–11. http://dx.doi.org/10.1016/j.jsg.2014.10.016.
Forte, A.M., Bailey, C.M., 2007. Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis. Journal of Structural Geology 29, 983‒1001. http://dx.doi.org/10.1016/j.jsg.2007.01.006.
Fossen, H., 2010. Structural geology. 1st edition, Cambridge University Press, New York. p. 463. https://doi.org/10.1017/CBO9780511777806.
Guang, Z., Cheng-Long, X., Wen, C., Xiang, Bi-W., Zhao-Qi, H., 2009. Evolution of the Hongzhen metamorphic core complex: Evidence for Early Cretaceous extension in the eastern Yangtze craton, eastern China. Geological Society of America Bulletin 122, 506–516. https://dx.doi.org/10.1130/B30028.1.
Grujic, D., Warren, C.J., Wooden, J.L., 2011. Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere 3, 346–366. https://dx.doi.org/10.1130/L154.1.
Jessup, M.J., Law, R.D., Frassi, C., 2007. The Rigid Grain Net (RGN): an alternate method for estimating mean kinematic vorticity number (Wm). Journal of Structural Geology 29, 411- 421. http://dx.doi.org/10.1016/j.jsg.2006.11.003.
Johnson, S.E., Lenferink, H.J., Marsh, J.H., Price, N.A., Koons, P.O., West, D.P., 2009b. Kinematic vorticity analysis and evolving strength of mylonitic shear zones: new data and numerical results. Geology 37, 1075-1078. http://dx.doi.org/10.1130/G30227A.1.
Johnson, S.E., Lenferink, H.J., Price, N.A., Marsh, J.H., Koons, P.O., West, D.P., Beane, R., 2009a. Clast-based kinematic vorticity gauges: the effects of slip at matrix/clast interfaces. Journal of Structural Geology 31, 1322-1339. http://dx.doi.org/10.1016/j.jsg.2009.07.008.
Konstantinou, A., Strickland, A., Miller, E., Vervoort, J., Fisher, C.M., Wooden, J., Valley, J., 2013. Synextensional magmatism leading to crustal flow in the Albion–Raft River–Grouse Creek metamorphic core complex, northeastern Basin and Range. Tectonics 32, 1384–1403. http://dx.doi.org/10.1002/tect.20085.
Lafrance, B., John Barbara, E., Frost, B.R., 1998. Ultra high-temperature and subsolidus shear zones: Examples from the Poe Mountain anorthosite, Wyoming. Journal of Structural Geology 20, 945–955. https://doi.org/10.1016/S0191-8141(98)00021-2.
Law, R.D., Searle, M.P., Simpson, R.L., 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet. Journal of the Geological Society 161, 305–320. http://dx.doi.org/10.1144/0016-764903-047.
Lisle, R.J., 1985. Geological strain analysis: a manual for the RF /Ф method. Elsevier Netherland, P. 99. ISBN: 9781483286457.
Lister, G.S., Davis G.A., 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA. Journal of Structural Geology 11, 65‒94. http://dx.doi.org/10.1016/0191-8141(89)90036-9.
MacCready, T., Snoke, A.W., Wright, J.E., Howard, K.A., 1997. Mid-crustal flow during Tertiary extension in the Ruby Mountains core complex, Nevada. Geological Society of America Bulletin 109, 1576-1594. http://dx.doi.org/10.1130/0016-7606(1997)109%3C1576:MCFDTE%3E2.3.CO;2.
Mancktelow, N.S., Pennacchioni, G., 2004. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites.  Journal of Structural Geology 26, 47–69. http://dx.doi.org/10.1016/S0191-8141(03)00081-6.
Marques, F.O., Burlini, L., 2008. Rigid inclusions rotate in geologic materials as shown by torsion experiments. Journal of Structural Geology 30, 11, 1368-1371. http://dx.doi.org/10.1016/j.jsg.2008.07.002.
Mulchrone, K.F., 2007. Shape fabrics in populations of rigid objects in 2D: Estimating finite strain and vorticity. Journal of Structural Geology 29, 1558-1570. http://dx.doi.org/10.1016/j.jsg.2007.06.006.
Passchier, C.W., 1987. Stable positions of rigid objects in non-coaxial flow e a study in vorticity analysis. Journal of Structural Geology 9, 679- 690. http://dx.doi.org/10.1016/0191-8141(87)90152-0.
Passchier, C.W., 1988. Analysis of deformation paths in shear zones. Geologische Rundschau 77, 309- 318. http://dx.doi.org/10.1007/BF01848692.
Passchier, C.W., Trouw, R.A.J., 2005. Microtectonics. 2nd edition, Springer Berlin, p. 366, ISBN: 3-540-64003-7.
Passchier, C.S., Urai, J.L. 1988. Vorticity and strain analysis using Mohr diagrams. Journal of Structural Geology: 10, 755–763. http://dx.doi.org/10.1016/0191-8141(88)90082-X.
Ramezani, J., Tucker, R.D., 2003. The Saghand Region, Central Iran: U-Pb Geochronology, Petrogenesis and Implications for Gondwana Tectonics. American Journal of Science 303, 622-665.
http://dx.doi.org/10.2475/ajs.303.7.622.
Ramsay, J.G., Huber, M., 1983. The Techniques of Modern Structural Geology. Volume 1: Strain analysis. Academic Press, Londo, p. 307, ISBN:978-0125769013.
Rosenberg, C.L., Stünitz, H., 2003. Deformation and recrystallisation of plagioclase along a temperature gradient: An example from the Bergell tonalite: Journal of Structural Geology 25, 389–408. https:// 10.1016/S0191-8141(02)00036-6.
Samani, B., 1998. Precambrian metallogeny in Central Iran. Precambrian Research 39, 85-106. https://doi.org/10.1016/0301-9268(88)90053-8.
Simpson, C., De Paor, D.G., 1993. Strain and kinematic analysis in general shear zones. Journal of Structural Geology 15, 1–20. http://dx.doi.org/10.1016/0191-8141(93)90075-L.
Simpson, C., De Paor, D.G., 1997. Practical analysis of general shear zones using the porphyroclast hyperbolic distribution method: an example from the Scandinavian Caledonides. In: Sengupta, S., (Ed.), Evolution of Geological Structures in Micro- to Macro- Scales, Chapman and Hall, pp. 169–184. ISBN:0412750309.
Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S.M., 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. Journal of Structural Geology 24, 1861–1884. http://dx.doi.org/10.1016/S0191-8141(02)00035-4.
Ten Brink, C.E., Passchier, W.P., 1995. Modelling of mantled porphyroclasts using non-Newtonian rock analogue materials. Journal of Structural Geology 17, 131–146. http://dx.doi.org/10.1016/0191-8141(94)E0032-T.
Teyssier, C., Whitney, D.L., 2002. Gneiss domes and orogeny. Geology 30, 1139–1142. http://dx.doi.org/10.1130/0091-7613(2002)030%3C1139:GDAO%3E2.0.CO;2.
Tikoff, B., Teyssier, C., 1994. Strain modeling of displacement-field partitioning in transpressional orogens. Journal of Structural Geology 16, 1575-1588. http://dx.doi.org/10.1016/0191-8141(94)90034-5.
 Wallis, S.R., Platt, J.P., Knott, S.D., 1993. Recognition of syn-convergence extension in accretionary wedges with examples from the Calabrian Arc and the Eastern Alps. American Journal of Science 293, 463-494. http://dx.doi.org/10.2475/ajs.293.5.463.
Wernicke, B., 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences 22, 108-125. http://dx.doi.org/10.1139/e85-009.
Whitney, D.L., Teyssier, C., Rey, P., Buck, W.R., 2013. Continental and oceanic core complexes. Geological Society of America Bulletin 125, 273-298. http://dx.doi.org/10.1130/B30754.1.
Xypolias, P., 2010. Vorticity analysis in shear zones: A review of methods and applications. Journal of Structural Geology 32, 2072-2092. https:// http://dx.doi.org/10.1016/j.jsg.2010.08.009.
Xypolias, P., Kokkalas, S., 2006. Heterogeneous ductile deformation along a mid-crustal extruding shear zone: An example from the External Hellenides (Greece). In: Law, R.D., Searle M.P, Godin, L., (Eds.), Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zone, of Geological Society special Publication 268, pp. 497‒516. http://dx.doi.org/10.1144/GSL.SP.2006.268.01.23.