کانسارمس کوه توتو با سنگ میزبان آتشفشانی، استان سمنان: مطالعات ژئوشیمیایی و ایزوتوپ های پایدار کربن و اکسیژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، واحد محلات، دانشگاه آزاد اسلامی، محلات، ایران

2 گروه زمین شناسی، واحد بهبهان، دانشگاه آزاد اسلامی، بهبهان، ایران

3 استاد دانشگاهگروه زمین شناسی، واحد محلات، دانشگاه آزاد اسلامی، محلات، ایران

4 گروه اکتشاف، شرکت بیتا سنگ کویر، کاشان، ایران

چکیده

کانسار مس کوه توتو در 25 کیلومتری غرب روستای ترود در استان سمنان واقع شده است. مالاکیت تنها کانۀ کانسنگ است. این کانی به صورت رگچه‌ای، پوششی، و لکه‌های کوچک در سنگ‌های آتشفشانی ائوسن یافت می‌شود. مالاکیت با کانی‌های فرعی کلسیت، اکسیدها و هیدروکسیدهای آهن و منگنز، کانی‌های رسی، اپیدوت، کوارتز، و کریزوکولا همراهی می‌شود. نمودارهای عناصر نادر خاکی بهنجار شده با کندریت در مالاکیت و کلسیت، از نظر غنی بودن در عناصر نادر خاکی سبک و آنومالی‌های Ce و Eu، شبیه سنگ‌های آتشفشانی میزبان است. سنگ‌های آتشفشانی میزبان غنی از Cu هستند ( به طور متوسط ppm 187). این شواهد ژئوشیمیایی بیانگر آن است که عناصر تشکیل دهندۀ کانی‌ها، از جمله Cu، از سنگ‌های آتشفشانی منشأ گرفته‌اند. زمین‌دماسنجی ایزوتوپی اکسیژن دمای متوسط °C 41 را برای تشکیل مالاکیت نشان می‌دهد. داده‌های موجود نشان می‌دهد که Cu بوسیلۀ آب‌های سطحی اکسیدی و به صورت +Cu2 از سنگ‌های آتشفشانی میزبان شسته شده است. وقتی که سیالات غنی از Cu وارد محیط آب‌های زیرزمینی شدند، Cu از طریق ترکیب شدن با یون‌های کربنات که به صورت CO2 در سیالات جوی حل شده‌اند، به صورت مالاکیت در شکستگی‌های سنگ‌های میزبان رسوب کرده است.

کلیدواژه‌ها


Abedini, A., Calagari, A.A., Naseri, H., 2016. Mineralization and REE geochemistry of hydrothermal quartz and calcite of the Helmesi vein-type copper deposit, NW Iran. Neues Jahrbuchfür Geologie und Paläontologie – Abhandlungen 281/2, 123-134.
Adabi, M., Karimpour, M., 2012. Comprehensive Naming and Classification of Sdimentary, Igneous, and Metamorphic Rocks, Ferdowsi University of Mashhad Publication.
Bau, M., Romer, R.L., Lüders, V., Dulski, P., 2003. Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine ore field, England. Mineralium Deposita 38, 992–1008.
Brown, A.C., 2005. Refinements for footwall red-bed diagenesis in the sediment-hosted stratiform copper deposits models. Economic Geology 100, 765–771.
Cai, Y., Zhang, Q., Zhang, Y., Wang, D., Li, K., 2015. Sm-Nd dating and rare earth element geochemistry of the hydrothermal calcites from Guling carbonate-hosted talc mineralization in the central Guangxi province, South China. Chinese Journal of Geochemistry 34, 156-166.
Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences 21, 767-780.
Chakhmouradian, A.R., Zaitsev, A.N., 2012. Rare earth mineralization in igneous rocks: sources and processes. Elements 8, 347–353.
Chavez, W.X., 2000. Supergene oxidation of copper deposits: zoning and distribution of copper oxide minerals. Society of Economic Geologists Newsletter 41, 10–21.
Crane, M.J., Sharpe, J.L., Williams, P.A., 2001. Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Records of the Australian Museum 53, 49–56.
De Putter, T., Mees, F., Decrée, S., Dewaele, S., 2010. Malachite, an indicator of major Pliocene Cu remobilization in a karstic environment (Katanga, Democratic Republic of Congo). Ore Geology Reviews 38, 90–100.
Eshraghi, S.A., Jalili, A., 2006. Moalleman Quadrangle Map 1:100,000, Geological Survey of Iran.
Fard, M., Rastad, E., Ghaderi, M., 2006. Epithermal gold and base metal mineralization at Gandy deposit, north of Central Iran and the role of rhyolitic intrusions. Journal of Sciences, Islamic Republic of Iran 17, 327-335.
Gabitov, R.I., Sadekov, A., Migdisov, A., 2017. REE incorporation into calcite individual crystals as one time spike addition. Minerals 7, 204 (1-11).
Ghorbani, M., 2002. An introduction to economic geology of Iran. National Geosciences Database of Iran, Rep No. 2, 695 p. (in Persian)
Ghorbani, M., 2013. The economic geology of Iran, mineral deposits and natural resources. Springer Geology, Dordrecht, Netherlands.
Gilg, H.A., Hochleitner, R., Keller, P., Struck, U., 2003. A fluid inclusion and stable isotope study of secondary oxidation minerals from the Tsumeb Cu-Pb-Zn deposit, Namibia. Acta Mineralogica-Petrographica, Abstract Series 2, Szeged, 78-79.
Guo, L., Hou, L., Liu, S., Nie, F., 2018. Rare earth elements geochemistry and C-O isotope characteristics of hydrothermal calcites: Implications for fluid-rock reaction and ore-forming processes in the Phapon gold deposit, NW Laos. Minerals 8, 438 (1-22).
Hushmandzadeh, A.R., Alavi Naini, M., Haghipour, A.A., 1978. Evolution of geological phenomenon in Torud area. Geological Survey of Iran, Report no. H5, 136 p. (in Farsi).
Ignacio, A.M., 2005. Supergene mineralisation of the Boyongan porphyry copper-gold deposit, Surigao del Norte, Philippines. Unpublished M.S. Thesis, University of Tasmania, Tasmania, Australia, 163p.
Industry, Mining and Trade Organization (IMTO), 2016. Report on the final exploration in the Northern Pirmardan's copper area. 195 p. (in Persian).
Karimpour, M.H., Sadeghi, M., 2019. A new hypothesis on parameters controlling the formation and size of porphyry copper deposits: Implications on thermal gradient of subducted oceanic slab, depth of dehydration and partial melting along the Kerman copper belt in Iran. Ore Geology Reviews 104, 522-539.
Kazemi, G.A., 2013. Isotope composition (18O and 2H) in precipitations of Shahrood area. Proceedings of the 1stNational Conference on Application of Stable Isotopes, Mashhad, Iran, pp 54–60.
Kazemi, G.A., Ichiyanagi, K., Shimada, J., 2015. Isotopic characteristics, chemical composition and salinization of atmospheric precipitation in Shahrood, northeastern Iran. Environmental Earth Sciences 73, 361–374.
Li, X.C., Zhou, M.F., 2018. The nature and origin of hydrothermal REE mineralization in the Sin Quyen deposit, northwestern Vietnam. Economic Geology 113, 645-673.
Maghsoudi, A., Yazdi, M., Mehrpartou, M., Vosoughi, M., Younesi, S., 2014. Porphyry Cu–Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran. Journal of Asian Earth Sciences 79, 932-941.
Malekzadeh Shafaroudi, A., Karimpour, M.H., Stern, C.R., 2015. The Khopik porphyry copper prospect, Lut Block, Eastern Iran: Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies. Ore Geology Reviews 65, 522-544.
Mathur, R., Fantle, M. S., 2015. Copper isotopic perspectiveson supergene processes: Implications for the global Cu cycle. Elements 11, 323–329.
McDonough, W.F., Sun, S.S., 1995. The composition of the earth. Chemical Geology 120, 223–253.
Mehrabi, B., Ghasemi, S.M., Tale, F.E., 2015. Structural Control on Epithermal Mineralization in the Troud-Chah Shirin Belt Using Point Pattern and Fry Analyses, North of Iran. Geotectonics 49, 320–331.
Melchiorre, E.B., 1998. Geochemical studies of low temperature fluids in diverse geological settings. Unpublished Ph.D. dissertation, Washington University, St. Louis, Missouri, 290 p.
Melchiorre, E.B., Criss, R.E., Rose, T.P., 1999. Oxygen and carbon isotope study of natural and synthetic malachite. Economic Geology 94, 245-259.
Melchiorre, E.B., Enders, M.S., 2003. Stable isotope geochemistry of copper carbonates at the Northwest Extension Deposit, Morenci District, Arizona: implications for conditions of supergene oxidation and related mineralization. Economic Geology 98, 607–621.
Melchiorre, E.B., Williams, P.A., 2001. Stable isotope characterization of the thermal profile and subsurface biological activity during oxidation of the Great Australia Deposit, Cloncurry, Queensland, Australia. Economic Geology 96, 1685–1693.
Mollai, H., Sharma, R., Pe-Piper, G., 2009. Copper mineralization around the Ahar batholith, north of Ahar (NW Iran): Evidence for fluid evolution and the origin of the skarn ore deposit. Ore Geology Reviews 35, 401-414.
Morgan, J.W., Wandless, G.A. 1980. Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control. Geochimica et Cosmochimica Acta 44, 973–980.
Mousivand, F., Rastad, E., Peter, J.M., Maghfouri, S., 2018. Metallogeny of volcanogenic massive sulfide deposits of Iran. Ore Geology Reviews 95, 974-1007.
Muchez, P., Brems, D., El Desouki, H., Haest, M., Vanderhaeghen, P., Dewaele, S., Heijlen, W., Mukumba, W., 2007. Base metal ore deposit evolution and geodynamics in the Central African Copperbelt. In: Andrew, C.J., et al. (Ed.), Digging Deeper; Proceedings of the 9th Biennal Meeting of the Society for Geology Applied to Mineral Deposits, Dublin, pp. 209–212.
Niroomand, S., Lentz, D.R., Sepidbar, F., Tajeddin, H.A., Hassanzadeh, J., Mirnejad, H., 2018. Geochemical characteristics of igneous rocks associated with Baghu gold deposit in the NeotethyanTorud‐Chah Shirin segment, Northern Iran. Geological Journal 2018, 1–18.
Park, R., Epstein, S., 1961. Metabolic fractionation of C13 & C12 in plants. Plant Physiology 36, 133-138.
Perry, E.P., Gysi, A.P., 2018. Rare earth elements in mineral deposits: Speciation in hydrothermal fluids and partitioning in calcite. Geofluids, article ID 5382480, 19 p.
Rajabpour, S., Abedini, A., Alipour, S., Lehmann, B., Jiang, S.Y., 2017. Geology and geochemistry of the sediment-hosted Cheshmeh-Konan red bed-type copper deposit, NW Iran. Ore Geology Reviews 86, 154-171.
Ramezani, J., Tucker, R.D., 2003. The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science 303, 622–665.
Rose, A.W., 1989. Mobility of copper and other heavy metals in sedimentary environments. In: Boyle, R.W., Brown, A.C., Jefferson, C.W., Jowett, E.C., Kirkham, R.V. (Eds.), Sediment-Hosted Stratiform Copper Deposits: Geological Association of Canada, Special Paper 36, 97–110.
Schönenberger, J., Köhler, J., Markl, G., 2008. REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland. Chemical Geology 247, 16–35.
Seguin, M. K., 1975. Thermogravimetric and differential thermal analysis of malachite and azurite in inert atmospheres and in air. The Canadian Mineralogist 13, 127-132.
Shamanian, G. H., Hedenquist, J. W., Hattor, H., Hassanzadeh, J., 2004. The Gandy and Abolhassani epithermal prospects in the Alborz magmatic Arc, Semnan province, northern Iran. Economic Geology 99, 691–712.
Sherman, D.M., 2013. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory. Geochimicaet Cosmochimica Acta 118, 85-97.
Sillitoe, R.H., 2005. Supergene oxidized and enriched porphyry copper and related deposits. Economic Geology, One Hundredth Anniversary Volume, 723-768.
Taghipour, N., Aftabi, A., Mathur, R., 2008. Geology and Re-Os geochronology of mineralization of the Miduk porphyry copper deposit, Iran. Resource Geology 58, 143-160.
Toyama, K., Terakado, Y., 2014. Experimental study of rare earth element partitioning between calcite and sodium chloride solution at room temperature and pressure. Geochemical Journal 48, 463–477.
Verhaert, M., Bernard, A., Saddiqi, O., Dekoninck, A., Essalhi, M., Yans, J., 2018. Mineralogy and genesis of the polymetallic and polyphased low grade Fe-Mn-Cu ore of Jbel Rhals deposit (Eastern High Atlas, Morocco). Minerals 8, 39.
Wedepohl, K.H., 1969. Handbook of geochemistry. Springer Verlag, New York, Heidelberg, Berlin, Various Paging.
Zarasvandi, A., Liaghat, S., Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad Porphyry Copper Deposits, Central Iran. International Geology Review 47, 620-646.