زمین‌دماسنجی پهنه‌های اسکارنی درکانسار آهن خسروآباد، شمال‌خاور سنقر

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ژئوشیمی، دانشکده علوم زمین، دانشگاه خوارزمی

چکیده

چکیده:
کانسار اسکارن آهن خسروآباد در شمال باختری پهنۀ زمین‌ساختی سنندج-سیرجان و در بخشی از زون فلززایی آهن باختر ایران (سری سنقر) قرار دارد. واحدهای زمین‌شناسی آن شامل متاآندزیت‌بازالتی اسکارنی شده‌، سنگ‌آهک متبلور و تودۀ نفوذی کوارتزمونزونیتی است. مهمترین کانی‌های پهنه‌های اسکارنی پیشرونده و پسرونده شامل گارنت، کلینوپیروکسن، اپیدوت، آلبیت، اکتینولیت، کلریت، دولومیت، کلسیت، کوارتز، سرپانتین و تالک هستند. زمین دماسنجی تشکیل اسکارن براساس کانی‌های سیلیکاته اسکارنی و انطباق آن‌ها با نتایج حاصل از مطالعات میانبارهای سیال و نیز تغییر شکل ماکل کلسیت، انجام شد. دمای بدست‌آمده از زمین‌دماسنجی دو فلدسپار در تودۀ کوارتزمونزونیتی، در محدوده دمایی 507 تا 805 درجۀ سانتی‌گراد است. زمین‌دماسنجی زوج کانی گارنت-کلینوپیروکسن، دماهای 301 تا 567 درجۀ سانتی‌گراد را برای پهنۀ اسکارن پیشرونده نشان داد. برپایۀ زمین‌دماسنجی کلریت و آمفیبول در پهنۀ پسرونده به ترتیب دماهای تشکیل 129 تا 315 و 216 تا 332 درجۀ سانتی‌گراد بدست آمد. نتایج زمین‌دماسنجی پهنه‌ی اسکارنی پسرونده با میکروترمومتری میانبارهای سیال در کانی کلسیت (127 تا 142 درجۀ سانتی‌گراد) و دماسنجی تغییرشکل ماکل‌های کلسیت (170 تا 300 درجۀ سانتی‌گراد) همخوانی دارد. آندرادیت در دمای بیش از 430 درجۀ سانتی‌گراد، حتی در شرایط سولفیداسیون بالای محیط نیز پایدار است. در دماهای کمتر از 430 درجۀ سانتی‌گراد و فوگاسیتۀ نسبتاً بالای گوگرد (بیش از 6-10)، آندرادیت به مجموعۀ کلسیت، کوارتز و پیریت دگرسان می‌شود. با کاهش fS2 (حدود 6-10)، چنین سیالاتی مجموعۀ مگنتیت را تشکیل می‌دهند. بنابراین، سیالات متاسوماتیسم‌کنندۀ پسرونده در کانسار اسکارن آهن خسروآباد، دارای فوگاسیتۀ گوگرد 5/6 -10 و دمای بیش از 430 درجۀ سانتی‌گراد داشته اند.

کلیدواژه‌ها


Amiri, M., Khalaji, A. A., Tahmasbi, Z., Sahamieh, R. Z., Zamanian, H., 2016. Geothermobarometry of amphiboles in intermediate to basic rocks from the Almogholagh pluton in western Iran. Journal of Mineralogical and Petrological Sciences 111, 337–350.‏
Anderson, J.L., 1996. Status of thermobarometry in granitic batholiths. Transaction of the Royal Society of Edinburg. Earth Sciences 87, 125–138.
Barnes, H.L., 1979. Geochemistry of hydrothermal ore deposits. 2nd ed. John Wily and
Sons 798 p.
Berman, R.G., Aranovich, L.Y., Pattison, D.R.M., 1995. Reassessment of the garnet-clinopyroxene Fe− Mg exchange thermometer: II. Thermodynamic analysis. Contributions to Mineralogy and Petrology 119(1), 30–42.‏
Bowman, J.R., 1998. Basic aspects and applications of phase equilibria in the analysis of metasomatic Ca-Mg-Al-Fe-Si skarns. Mineralized intrusion-related skarn systems. Mineralogical Association of Canada Short Course 26, 1–49.‏
Bourdelle, F., Parra, T., Chopin, C., Beyssac, O., 2013. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contributions to Mineralogy and Petrology 165(4), 723–735.‏
Burkhard, M., 1993. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. Journal of Structural geology 15(3–5), 351–368.‏
Cathelineau, M., Nieva, D., 1985. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contributions to Mineralogy and Petrology 91(3), 235–244.
‏Cathelineau, M., 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals 23(4), 471–485.‏
‏Chowdhury, S., Lentz, D.R., 2011. Mineralogical and geochemical characteristics of scheelite-bearing skarns, and genetic relations between skarn mineralization and petrogenesis of the associated granitoid pluton at Sargipali, Sundergarh District, Eastern India. Journal of Geochemical Exploration 108(1), 39–61.‏
Clechenko, C., Valley, J.W., 2003. Oscillatory zoning in garnet from the Willsboro wollastonite skarn, Adirondack Mts., New York: a record of shallow hydrothermal and processes preserved in a granulite facies terrain. Journal Metamorphic Geology 21,771–784.
De Caritat, P., Hutcheon, I.A.N., Walshe, J.L., 1993. Chlorite geothermometry: a review. Clays and Clay Minerals 41(2), 219–239.
Ebrahimi Fard, H., 2020. Mineral chemistry and geochemistry of skarn zones in the KhosrowAbad iron deposit, NE Sonqor. MSc thesis, University of  Kharazmi, Tehran, Iran.
Eshraghi, S. A., Jafarian, M.B., Eghlimi, B., 1996. Explanatory text of Sonqor. Geological Map 1:100000, Geological Survey of Iran, Tehran.
Elkins, L.T., Grove, T.L., 1990. Ternary feldspar experiments and thermodynamic models. American Mineralogist 75(5–6), 544–559.
Ellis, D.J., Green, D.H., 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology 71(1), 13–22.‏
Einaudi, M. T., Meinert, L. D., Newberry, R.J., 1981. Skarn deposits. Economic Geology 75, 317–391.
Einaudi, M.T., Burt, D.M., 1982. Introduction-terminology, classification andcomposition of skarn deposits. Economic Geology 77(4), 745–754.
Einaudi, M. T., 1982a. Description of skarn associated with porphyry copper plutons, southwestern North America. In Titley, S.R., ed., Advanccesin Geology of theporphyry copper Deposits, southwestern North America. University of Arizona Press 139–184.
Einaudi, M. T., 1982b. General features and origin of skarn associated with porphyry copper plutons, southwestern North America. In Titley, S. R., ed., Advanccesin Geology of the porphyry copper deposits, southwestern North America. University of Arizona Press, 185–210.
Ernst, W.G., 1976. Petrologic phase equilibria. W. H. Freeman, San Francisco 333p.
El-Sharkawy, M.F., 2000. Talc mineralization of ultramafic affinity in the Eastern Desert of Egypt. Mineralium Deposita 35(4), 346–363.
Evans, M.A., Dunne, W.M., 1991. Strain factorization and partitioning in the North Mountain thrust sheet, central Appalachians, USA. Journal of Structural Geology 13(1), 21–35.‏
Fazlnia, A., Jamei, S., Jafari, A., 2014. Penetrative conditions and tectonomagmatic setting of the Takht granitic batholith, Sirjan. Iranian Journal of Petrology 5(17),‏ 2228–5210.
Fazlnia, A.N., 2017. Geochemistry and tectonomagmatic setting of the Kharaju gabbroic intrusions (South Azarshahr, East Azerbaijan province). Iranian Journal of Petrology 28, 127– 144.
‏Ferrill, D.A., 1991. Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone. Journal of Structural Geology 13(6), 667–675.‏
Ferry, J.M., 1994. Role of fluid flow in the contact metamorphism of siliceous dolomitic limestones. American Mineralogist 79(7–8), 719–736.
‏Fuhrman, M.L., Lindsley, D.H., 1988. Ternaryfeldspar modeling and thermometry. American Mineralogist 73, 201–215.
Ghasemi Siani, M., Mehrabi B., 2020. Geothermometry of Dardvay anomaly skarn zones (Sangan mining area). Iranian Journal of Crystallography and Mineralogy 28(1), 125–140 (in Persian).
Ganguly, J., 1979. Garnet and clinopyroxene solid solutions, and geothermometry based on Fe-Mg distribution coefficient. Geochimica et Cosmochimica Acta 43(7), 1021–1029.‏
Ganguly, J., Cheng, W., Tirone, M., 1996. Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications. Contributions to Mineralogy and Petrology 126(1–2), 137–151.‏
Gerya, T. V., Perchuk, L. L. Triboulet, C. Audren, C., Sez'Ko, A. I., 1997. Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan. Petrology 5(6), 503–533.‏
Ghorbani, M., 2007. Economic Geology of Mineral Deposits and Natural Resources of Iran, 1st edition, Arian
Zamin Publishers, p. 492.
Ghorbani, H., Moazzen, M., Saki, A., 2016. Investigations on mineral chemistry and PT estimation for formation of diopside, garnet and coexisting minerals in the calc-silicate hornfelses from the Alvand metamorphic aureole, Hamadan, West of Iran.‏ Scientific Quaterly Journal, Geosciences 26 (101), 139–146.
Groshong Jr, R.H., Pfiffner, O.A., Pringle, L. R., 1984. Strain partitioning in the Helvetic thrust belt of eastern Switzerland from the leading edge to the internal zone. Journal of Structural Geology 6(1–2), 5–18.‏
Groves, D.I., Bierlein, F.P., Meinert, L.D., Hitzman, M.W., 2010. Iron oxide copper–gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Economic Geology 105, 641–654.
Gustafson, W.I., 1974. The stability of andradite, hedenbergite, and related minerals in the system Ca-Fe-Si-O-H. Journal of Petrology 15, 455–496.
Harris, N.B., Einaudi, M.T., 1982. Skarn deposits in the Yerington District, Nevada; metasomatic skarn evolution near Ludwig. Economic Geology 77(4), 877–898.‏
Heimann, A., Spry, P.G., Teale, G.S., Conor, C.H.H., Leyh, W.R., 2009. Geochemistry of garnet-rich rocks in the Southern Curnamona province, Australia and their genetic relationship to Broken Hill-type PbZn-Ag mineralization geology. Economic Geology 104,687–712.
Helgeson, H.C., 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Sciences 267(7), 729–804.
Helmy, H.M., Ahmed, A.F., El Mahallawi, M.M., Ali, S.M., 2004. Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications. Journal of African Earth Sciences 38(3), 255–268.‏
Hillier, S.T., Velde, B., 1991. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Minerals 26(2), 149–168.‏
Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D., Vieillard, P., 2009. Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clays and Clay Minerals 57(3), 371–382.‏
Karimpour, M.H., Khin, Z., 2000. Geochemistry and physicochemical condition of Qaleh-Zari Cu AgAu ore bearing solution based on chlorite composition. Iranian Journal of Crystallography and Mineralogy 8(1), 3–22.
Kwak, T.A., 1994. Hydrothermal alteration in carbonate-replacement deposits. Geol. Assoc. Canada, Short Course Notes 11, 381–402.‏
Kranidiotis, P., MacLean, W.H., 1987. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology 82(7), 1898–1911.‏
Krogh, R., 2000. The garnet–clinopyroxene Fe2+–Mg geothermometer: an updatedcalibration. Journal of Metamorphic Geology 18(2), 211–219.
Lanari, P., Rolland, Y. Schwartz, S. Vidal, O. Guillot, S. Tricart, P., Dumont, T., 2014.  P–T–t estimation of deformation in low‐grade quartz‐feldspar‐bearing rocks using thermodynamic modelling and 40Ar/39Ar dating techniques: example of the Plan‐de‐Phasy shear zone unit (Briançonnais Zone, Western Alps). Terra Nova 26(2), 130–138.‏
Leake, B. E., Woolley, A. R., Arps, C.E.S., Birch, W.D., Gilbert. M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals Names. American Mineralogist 82, 1019–1037.
Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C.N. and Whittaker, E.J.W., 2004. Nomenclature of amphiboles: Additions and revisions to the Internationa Mineralogical Association's amphibole nomenclature. American Mineralogist 89, 883–887.
Liou, J.G., 1974. Stability relations of andradite-quartz in the system CaFe-Si-O-H. Ameriacan Mineralogist 59, 1016–1025.
Li, W.Y., Teng, F.Z., Xiao, Y., Gu, H.O., Zha, X.P., Huang, J., 2016. Empirical calibration of the clinopyroxene–garnet magnesium isotope geothermometer and implications. Contributions to Mineralogy and Petrology 171(7), 61.‏
Masotta M., Mollo S., Freda C., Gaeta M., Moore G., 2013. Clinopyroxene–liquid thermometers and barometers specific to alkaline differentiated magmas. Contributions to Mineralogy and Petrology 166, 1545–1561.
Meinert, L. D., 1992. Skarn and skarn deposits. Geosciences of Canada 19(4), 145–162.
Meinert, L.D., 1995. Compositional variation of igneous rocks associated with skarn deposits- chemical evidence for a genetic connection between petrogenesis and mineralization. In: Thompson JFH (ed)
Magmas, fluids and ore deposits. Mineralogical Association of Canada, Short Course Series 23,400–418.
Motevalli, K., 2005. Mineralogy, Geochemistry and Genesis of Khosrowabad and Tekye Bala Iron Deposits in Northeastern Sonqor. MSc thesis, University of Tarbiat Modarres, Tehran, Iran.
Motavalli, K., Ghaderi, M., Rashid Nejad, N., 2006. Mineralogy, Structure and texture and genesis of Khosrow Abad iron deposit Northeastern of Kermanshah. Journal of Earth Sciences 60(15), 10 p.
Mohajjel, M., 1997. Structure and tectonic evolution of Paleozoic - mesozoic rocks, Sanandaj - Sirjan Zone (Western Iran). Ph.D. Thesis, University of Wollongong, Wollongong, Australia (Unpublished).
Nakamura, D., 2009. A new formulation of garnet–clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. Journal of Metamorphic Geology 27(7), 495–508.‏
Nakamura, D., Svojtka, M., Naemura, K., Hirajima, T., 2004. Very high‐pressure (> 4 GPa) eclogite associated with the Moldanubian Zone garnet peridotite (Nové Dvory, Czech Republic). Journal of Metamorphic Geology 22(6), 593–603.‏
Nakamura, D., Hirajima, T., 2005. Experimental evaluation of garnet–clinopyroxene geothermometry as applied to eclogites. Contributions to Mineralogy and Petrology 150(6), 581–588.‏
Nekvasil, H., 1992. Ternary feldspar crystallization in high-temperature felsic magmas. American Mineralogist 77, 592–604.
Oyman, T., 2010. Geochemistry, mineralogy and genesis of the Ayazmant Fe–Cu skarn deposit in Ayvalik, (Balikesir), Turkey. Ore Geology Reviews 37(3–4), 175–201.‏
Pattison, D.R.M., Newton, R.C., 1989. Reversed experimental calibration of the garnet-clinopyroxene Fe—Mg exchange thermometer. Contributions to Mineralogy and Petrology 101(1), 87–103.‏
Passchier, C.W., Trouw, R.A.J., 2005. Microtectonics. Springer Verlag, Berlin,
Heidelberg 371p.
Perkins, E. H., Brown, T.H., Berman, R.G., 1986. PT-system, TX-system, PX-system: Three programs which calculate pressure-temperature-composition phase diagrams. Computers and Geosciences 12(6), 749–755.
Pichab Kansar Consulting Engineers, 2017. Final report of the detailed exploration operation project in Khosrowabad Sonqor Iron Deposit 129 p.
Pollard, P.J., 2001. Sodic (–calcic) alteration in Fe-oxide–Cu–Au districts: an origin via unmixing of magmatic H 2 O–CO2–NaCl±CaCl2–KCl fluids. Mineralium Deposita 36(1), 93–100.
Pollard, P.J., 2006. An intrusion-related origin for Cu–Au mineralization in iron oxide– copper–gold (IOCG) provinces. Mineralium Deposita 41, 179–187.
Powell, R., 1985. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet‐clinopyroxene geothermometer revisited. Journal of Metamorphic Geology 3(3), 231–243.
Putirka, K.D., Perfit, M., Ryerson, F.J., Jackson, M.G., 2007. Ambient and excess mantle
temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology 241,
177–206.
Putirka, K.D., 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry 69, 61–120.
Putirka, K.D., 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist 101(4), 841–858.‏
Ridolfi, F., Renzulli, A., 2012. Calcic amphiboles in calc-alkaline and alkaline magmas:
thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa.
Contributions to Mineralogy and Petrology 163, 877–895.
Samadi, S., Rasa, I., Maanijou, M., 2014. Application of electron microprobe datas in determining Khosrow Abad iron deposit type, Sonqor. Iranian Journal of Researches in Earth Sciences 5(18), 63–74.
Saxena, S.K., 1979. Garnet-clinopyroxene geothermometer. Contributions to Mineralogy and Petrology 70(3), 229–235.‏
Sweeney, M.L., 1980. Geochemistry of garnets from the North Ore shoots, Bingham district, Utah. Unpublished MSc Thesis, University of Utah, 154 pp.
Scott, S.D., Barnes, H.L., 1971. Sphalerite geothermometry and geobarometry. Economic Geology 66(4), 653–669.
Schulz, B., Triboulet, C., Audren, C., 1995. Microstructures and mineral chemistry in amphibolites from the Western Tauern Window (Eastern Alps), and PT deformation paths of the Alpine greenschist-amphibolite facies metamorphism. Mineralogical Magazine 59(397), 641–659.‏
Shin, D., Lee, I., 2003. Carbonate-hosted talc deposits in the contact aureole of an igneous intrusion (Hwanggangri mineralized zone, South Korea): geochemistry, phase relationships, and stable isotope studies. Ore Geology Reviews 22(1–2), 17–39.
‏Sillitoe, R.H., 2003. Iron oxide-copper-gold deposits: an Andean view. Mineralium Deposita 38(7), 787–812.
‏Smirnov, V.I., 1976. Skarn deposites, in geology of mineral deposites. MIR publication, Moscow, 156–188.
Štípská, P., Powell, R., 2005. Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif. Journal of Metamorphic Geology 23(8), 725–743.‏
Stocklin, J., Nabavi, M. H., 1973. Tectonic map of Iran, Geological Survey of Iran.
Sugawara, T., 2000. Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid. Journal of Geophysical Research 105, 8457–8472.
Taylor, B.E., Liou, J.G., 1978. The low-temperature stability of andradite in COH fluids. Americal Mineralogist 63(3–4), 378–393.
Thompson, A.J.B., Thompson, J.F.H., 1996. Atlas of alteration: A field and petrographic guide to hydrothermal alteration minerals, Alpine Press Limited, Vancouver, British Columbia, 119 p.
Twiss, R.J., Moores, E.M., 1992. Structural geology. Freeman and Company, New York, 532p.
‏Ulmer, P., Trommsdorff, V., 1999. Phase relations of hydrous mantle subducting to 300 km. Pp. 259–281 in: Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd (Y. Fei, C.M. Bertka and B.O. Mysen, editors). Special Publication 6, the Geochemical Society, Missouri, USA.
Wang, X., Zeng, Z., Chen, J., 2009. Serpentinization of peridotites from the southern Mariana forearc. Progress in Natural Science 19(10), 1287–1295.‏
Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist 95(1), 185–187.
Williams, P.J., Barton, M.D., Johnson, D.A., Fontbote, L., DeHaller, A., Mark, G.,
Oliver, N.H.S., Marschik, R., 2005. Iron oxide copper-gold deposits: geology, space-time distribution and possible modes of origin. Economic Geology 100, 371–405.
‏Xie, X., Byerly, G.R., Ferrell Jr, R.E., 1997. IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry. Contributions to Mineralogy and Petrology 126(3), 275–291.‏
Yassaghi, A., Nemati, M., Kamali, M. R., 2010. Application of quartz and calcite microstructures and fluid inclusions on estimation of deformation condition and origin of the Zagros orogeny thrust sheets in the Bakhtyari area. Iranian Society of Crystalligraphy and Mineralogy 18(2), 181–194.
Zamanian, H., Sameti, M., Pazoki, A., Barani, N., Ahmadnejad, F., 2017. Thermobarometry in the Sarvian Fe-skarn deposit (Central Iran) based on garnet–pyroxene chemistry and fluid inclusion studies. Arabian Journal of Geosciences 10(3), 54–71.‏
Zanganeh Ghasemabadi, M., Boomeri, M., Biabangard, H., 2017. Investigation of skarn formation using petrographic, mineral chemistry and fluid inclusion data, south west of Khaf, (southeast of Razavi Khorasan Province). Iranian Journal of Crystallography and Mineralogy 25 (1), 35–48.
Zang, W., Fyfe, W.S., 1995. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Mineralium Deposita 30(1), 30–38.‏
Zenk, M., Schulz, B., 2004. Zoned Ca-amphiboles and related PT evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineralogical Magazine 68(5), 769–786.‏
 Zhang, H.F., Zhu, R.X., Santosh, M., Ying, J.F., Su, B.X., Hu, Y., 2013. Episodic widespread magma underplating beneath the North China Craton in the Phanerozoic: implications for craton destruction. Gondwana Research 23, 95–107.