بررسی رفتار عناصر نادر خاکی و کمیاب در کانسار مس پورفیری سرکوه، کرمان، ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشکده علوم زمین کاربردی و ژئوفیزیک، دانشگاه مونتان لئوبن، لئوبن، اتریش

چکیده

کانسار مس پورفیری سرکوه در 6 کیلومتری جنوب‌غربی کانسار سرچشمه در کمان ماگمایی ارومیه – دختر واقع شده است. هدف از این مطالعه بررسی ژئوشیمی عناصر نادر خاکی و عناصر کمیاب به منظور ارزیابی شاخصه‌های ماگمایی این کانسار می‌باشد. در این کانسار سنگ‌های نفوذی منشا کانه‌زایی مس پورفیری عمدتا شامل گرانودیوریت و گرانیت می‌باشند که دستخوش شکستگی‌های استوک ورکی شده اند. بر اساس روابط قطع‌شدگی رگه‌ها و زون‌های دگرسانی سه مرحله تکامل سیستم گرمابی و کانه‌زایی در این کانسار قابل تشخیص می‌باشند. آنها عبارتند از (1) مرحله پیش از کانه زایی ، (2) مرحله کانه زایی اصلی که شامل رگه‌های قدیمی‌تر کوارتز + بیوتیت + کلریت ± مگنتیت ± پیریت ± کالکوپیریت در زون دگرسانی پتاسیک و رگه های جوانتر کوارتز+ پیریت ± کالکوپیریت ± بورنیت ± کالکوسیت ± سریسیت در زون انتقالی پتاسیک - فیلیک می باشد و در نهایت (3) رگه‌های انتهایی فاقد کانه‌زایی. داده‌های ژئوشیمیایی نشان می‌دهد نمونه‌های توده‌های نفوذی روند افزایشی Lan/Ybn را نشان می‌دهند که بین 83/14 و 57/56 (میانگین 21/27) متغیر می‌باشند، همچنین ناهنجاری‌های یوروپیم از مقادیر کمی منفی تا اندکی مثبت (77/0 – 35/1 Eu/Eu*=؛ میانگین 01/1) متغیر می‌باشند. علاوه‌بر این نمودارهای Sr/Y درمقابل Y و نیز La/Yb در مقابل Yb مبین تمایل آداکایتی سنگ‌های نفوذی کانسار پورفیری سرکوه می باشد. شاخص سازی سیستم ماگمایی این کانسار نشان می دهد فقدان تفریق قابل توجه پلاژیوکلاز (مسئول جدایش Sr از ماگما) به همراه مشارکت Y در کانی‌های آبدار تحت شرایط آب ماگمایی بالا باعث ایجاد شاخصه‌های آداکایتی در این کانسار شده است.

کلیدواژه‌ها


Aghazadeh, M., Hou, Z., Badrzadeh, Z., Zhou, L., 2015. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews 70, 385–406.
Alavi, M., 2004. Regional Stratigraphy of the Zagros Fold-Thrust Belt of Iran and its Proforeland Evolution. American Journal of Science, pp. 304.
Andreas, A., Thomas, P., Chistoph, H., Robert, B., 2008. The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions. Economic Geology 103, 877–908.
Asadi, S., Moore, F., Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: A review. Earth-Science Reviews 138, 25–46.
Berberian, F., Muir, I.D., Pankhurst, R.J., Berberian, M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of Geological Society of  London 139, 605–614.
Berger, B.R., Ayuso, R., Wynn, J.C., Seal, R.R., 2008. Preliminary model of porphyry copper deposits. Open-File Report, U. S. Geological Survey.
Brown, G.C., Thorpe, R.S., Webb, P.C., 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J. Geol. Soc. London. 141, 413–426.
Chappell, B., White, A., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Science 48, 489–499.
Defant, M., Kepezhinskas, P., 2001. Adakites: A review of slab melting over the past decade and the case for a slab-melt component in arcs. Eos (Washington. DC) 82, 68–69.
Defant, M.J., Drummond, M.S., 1990. Derivation of some modern magmas through melting of young subducted lithosphere. Nature 347, 662–665.
Defant, M.J., Drummond, M.S., 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 21, 547.
Ghasemi, A., Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). Journal of Asian Earth Sciences 26, 683–693.
Haschke, M., Siebel, W., Günther, A., Scheuber, E., 2002. Repeated crustal thickening and recycling during the Andean orogeny in North Chile (21°-26°S). Journal Geophysical Research, pp.107.
Hassanzadeh, J., 1993. Metallogenic and tectonomagmatic events in the SE sector of Cenozoic active continental margin of Central Iran (Sharebabak area), Kerman Province. PhD Thesis, University of California, Los Angeles.
Kay, R.W., 1978. Aleutian magnesian andesites: Melts from subducted Pacific ocean crust. Journal Volcanology and Geothermal Research 4, 117–132.
McInnes, B.I.A., Evans, N.J., Belousova, E., Griffin, W.L., 2003. Porphyry copper deposits of the Kerman belt, Iran: Timing of mineralization and exhumation processes. Proceedings of the 7th  Biennial SGA Meeting on Mineral Exploration and Sustainable Development, Athens, Greece, August 24-28,
McInnes, B.I.A., Evans, N.J., Fu, F.Q., Garwin, S., Belousova, E., Griffin, W.L., Bertens, A., Sukama, D., Permanadewi, S., Andrew, R.L., Deckart, K., 2005. Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu–Mo–Au deposits. In: Porter, T.M. (Ed.), Super Porphyry Copper and Gold Deposits: A Global Perspective.
Nourali, S., Mirnejad, H., 2012. Hydrothermal evolution of the Sar-Kuh porphyry copper deposit, Kerman, Iran: A fluid inclusion and sulfur isotope investigation. Geopersia 2, 93–107.
Orozco-Esquivel, T., M. Petrone, C., Ferrari, L., Tagami, T., Manetti, P., 2007. Geochemical and isotopic variability in lavas from the eastern Trans-Mexican Volcanic Belt: Slab detachment in a subduction zone with varying dip. Lithos 93, 149–174.
Pearce, J., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margin. Cont. Basalts Mantle Xenoliths 230–249.
Pearce, J., Harris, N., Tindle, A., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology 25, 956–983.
Reichow, M., Saunders, A., White, R., Al’Mukhamedov, A., Medvedev, A.Y., 2005. Geochemistry and petrogenesis of basalts from the West Siberian Basin: An extension of the Permo-Triassic Siberian Traps, Russia. Lithos 79, 425–452.
Rezaei, M., 2017. Effective parameters in mineralization potential of economic and sub-economic porphyry copper deposits in Urumieh-Dokhtar magmatic zone: using geochemical and fluid inclusion studies. PhD Thesis, Shahid Chamran University of Ahvaz.
Rezaei, M., Zarasvandi, A., 2020. Titanium-in-biotite thermometry in porphyry copper systems: Challenges to application of the thermometer. Resource Geology 70, 157–168.
Richards, J., Kerrich, R., 2007. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology 102, 537–576.
Richards, J., Spell, T., Rameh, E., Razique, A., Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: Examples from the tethyan arcs of central and eastern iran and Western Pakistan. Economic Geology 107, 295–332.
Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews 40, 1–26.
Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews 70, 323–345.
Schandl, E.S., 2002. Application of High Field Strength Elements To Discriminate Tectonic Settings in Vms Environments. Economic Geology 97, 629–642.
Shafiei, B., Haschke, M., Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, Southeastern Iran. Mineralium Deposita 44(3), 265-283.
Sillitoe, R.H., 2010. Porphyry Copper Systems. Economic Geology 105, 3–41.
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publication 42, 313–345.
Sun, W., Huang, R., Li, H., Hu, Y., Zhang, C., Sun, S., Zhang, L., Ding, X., Li, C., Zartman, R.E., Ling, M., 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews 65, 97–131.
Temel, A., Gündoğdu, M.N., Gourgaud, A., 1998. Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research 85, 327–354.
Wang, R., Richards, J.P., Hou, Z., Yang, Z., Du Frane, S.A., 2014. Increased magmatic water content-the key to oligo-miocene porphyry Cu-Mo ± Au formation in the Eastern Gangdese Belt, Tibet. Economic Geology 109, 1315–1339.
Zarasvandi, A., Liaghat,  S., Zentilli, K., 2005. Porphyry copper deposits of the Urumieh-Dokhtar magmatic arc, Iran. Super Porphyry Copp. Gold Depos. A Global Perspective 2, 441–452.
Zarasvandi, A., Rezaei, M., Raith, J., Lentz, D., Azimzadeh, A.M., Pourkaseb, H., 2015a. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran. Journal of Asian Earth Sciences 111, 175–191.
Zarasvandi, A., Rezaei, M., Raith, J.G., Asadi, S., Lentz, D., 2019. Hydrothermal fluid evolution in collisional Miocene porphyry copper deposits in Iran: Insights into factors controlling metal fertility. Ore Geology Reviews 105, 183–200.
Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S., Saed, M., Lentz, D.R., 2018. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geochimica et Cosmochimica Acta 223, 36–59.
Zarasvandi, A., Rezaei, M., Sadeghi, M., Lentz, D., Adelpour, M., Pourkaseb, H., 2015b. Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA), Iran. Ore Geology Reviews 70, 407–423.