پیش‌بینی مناطق مستعد تغذیه آبهای زیرزمینی بر اساس مدل حداکثر آنتروپی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان

2 هیئت علمی گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان

3 هیئت علمی گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه شیراز

4 هیئت علمی گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه گنبد کاووس

چکیده

در این پژوهش پتانسیل‌ پهنه های دارای قابلیت نفوذ برای تغذیه آب‌های زیرزمینی بااستفاده از مدل حداکثر آنتروپی در حوزه آبخیز ماربره در شرق لرستان مورد بررسی قرار گرفت. نتایج این مطالعه براساس آزمون جک نایف نشان می‌دهد که مهم ترین فاکتورهای تاثیر گذار در پیش بینی نواحی دارای پتانسیل نفوذ، بافت خاک و سنگ‌شناسی می باشند و فاکتور انحنای سطح و شاخص رطوبت توپوگرافیکی تاثیر کمی دارند. نتایج مدل آنتروپی حداکثر نشان داد که بیشترین پتانسیل نفوذ در قسمت‌های میانی حوزه که مناطق دشتی با درصد شیب کم، بافت عمدتا شنی ودارای رسوبات کواترتری می‌باشند، مشاهده می‌شود. مناطق با نفوذذیری بسیار زیاد، 7/0 کیلومتر مربع (02/0 %) از کل منطقه مورد مطالعه را در بر می‌گیرد. در حالی که منطقه با نفوذذیری زیاد، متوسط و کم به ترتیب 4/78 km2 (1/3 %) 2/18 km2 (7/0%) و 5/262 km2 (18/96%) را در بر می گیرد. دقت و توانایی مدل پیش بینی پتانسیل نفوذ براساس شاخص‌های مختلف صحت سنجی از خوب تا عالی ارزیابی شد. با توجه به نتایج بدست آمده، مناطق دشتی حوزه ماربره، مستعد نفوذپذیری بوده و با مدیریت میزان رواناب و سیلاب‌های ناشی از بارش‌ها و ذوب برف، میتوان به تقویت منابع آب زیرزمینی کمک نمود. انتظار می‌رود.

کلیدواژه‌ها


Achouri, M., Gifford, G.F., 1984. Spatial and seasonal variability of field measured infiltration rates on a rangeland site in Utah. Journal of Range Management 37, 451- 455.
Agrawal, D., Singh. J.K., Kumar, A., 2005. Maximum entropy-based conditional probability distribution runoff model. Biosystem Engeenering 90(1), 103–113.
Althuwaynee, O.F., Pradhan. B., Park. H.J., Lee. J.H., 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 11(4), 21–36.
Arshad, M., 2015. Assessing the feasibility of managed aquifer recharge under uncertainty. The Australian National University, 1-152.
Banavar, J.R., Maritan, A., Volkov, I., 2010. Applications of the principle of maximum entropy: from physics to ecology. Journal of Physics: Condensed Matter 22(6), p.063101.
Behyari, M., Alizadeh, A., Mahmoudian, Sh., 2017. Evaluation of the effect of active structures on the risk of land subsidence using multivariate decision models. Journal of Advanced Applied Geology, 24, 49-56 (In Persian).
Beven, K., Freer, J., 2001. A dynamic TOPMODEL, Hydrological Processes, 15 (10), 1993-2011.
Boria, R.A., Olson, L.E., Goodman, S.M., Anderson, R.P., 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275, 73–77.
Chowdhury, A., Jha, M.K., Chowdary, V.M., 2011. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur District, West Bengal using RS, GIS and MCDM techniques. Environmental Earth Science 59 (6), 1209–1222.
Conforti, M., Aucelli, P.P, Robustelli, G., Scarciglia, F., 2011. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat Hazards 56 (3), 881–898.
Dillon, P., 2005. Future management of aquifer recharge. Hydrogeology Journal 13, 313-316.
Evans, I.S., 1972. General Geomorphology, Derivatives of altitude and descriptive statistics. In R.J. Chorley (Ed.), Spatial Analysis in Geomorphology, London, 17-90.
Fagbohun, B.J., 2018. Integrating GIS and multi-influencing factor technique for delineation of potential groundwater recharge zones in parts of Ilesha schist belt, southwestern Nigeria. Environmental Earth Sciences, 77(3), 69.
Ghorbani Vagheyi, H., 2004. Evaluation of changes in soil erodibility factor in USLE and RUSLE models using GIS in northeastern soils of Lorestan province, Tarbiat Modarres University, M.Sc. thesis (In Persian).
Gleeson, T., Wada, Y., Bierkens, M.F., van Beek, L.P., 2012. Water balance of global aquifers revealed by groundwater footprint. Nature 488(7410), 197-200.
Guo, C., Montgomery. D.R., Zhang. Y., Wang. K., Yang. Z., 2015. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China. Geomorphology 248, 93–110.
Hoffman, D.J., Narumalani, S., Mishra, D.R., Merani, P., Wilson, R.J., 2008. Predicting Potential Occurrence and Spread of Invasive Plant Species along the North Platte River, Nebraska. Invasive Plant Science and Management 1, 359-367.
Huang, C.C., Yeh, H.F., Lin, H.I., Lee, S.T., Hsu, K.C., Lee, C.H., 2013. Groundwater recharge and exploitative potential zone mapping using GIS and GOD techniques. Environmental Earth Sciences 68(1), 267-280.
Jafari, A., Mirzaei, R., Zamani Ahmad Mahmoudi, R., 2016. modeling the distribution of Isfahan rams and ewes in the Tang Sayad protected area based on the oblique improvement of attendance data and selection of appropriate variables using maximum entropy. Applied Ecology, 5(15), 39-48 (In Persian).
Jaafarzadeh, M.S., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R., Rouhani, H., 2021. Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models, Scientific Repots 11, 1- 18.
Khalasi Ahvazi, L., Zare Chahouki, M., Hosseini, Z., 2015. Modeling the geographical distribution of the habitat of Artemisia aucheri and Artemisia sieberi based on presence-based methods (MaxEnt and ENFA). Journal of Renewable Natural Resources Research 8(8), 50 (In Persian).
Konikow, L.F., Kendy, E., 2005. Groundwater depletion: A global problem. Hydrogeology Journal 13(1), 317-320.
Lee, S., Min, K., 2001. Statistical analysis of landslide susceptibility at Youngin, Korea. Environmental Geology 40, 1095–1113.
Li, X., Zhao, S., Yang, H., Cong, D., Zhang, Z., 2017. A bi-band binary mask-based land-use change detection using Landsat 8 OLI imagery. Sustainability 9(3), 479.
Liu, X., He, J., Yao, Y., Zhang, J., Liang, H., Wang, H., Hong, Y., 2017. Classifying urban land use by integrating remote sensing and social media data. International Journal of Geographical Information Science 31(8), 1675-1696.
Lucà, F., Conforti, M., Robustelli, G., 2011. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology 134(3), 297-308.
Malekirad, Z., Baharvand, S., Nourizdan, A., Amini Kia, A., 2010. Geological study of Lorestan plains and its effect on the quality and quantity of water resources using satellite data, Conference on Geological Regions of Iran Zamin Plateau, Zarand Islamic Azad University, 411-417 (In Persian).
Marker, M., Pelacani, S., Schroder, B., 2012. A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy. Geomorphology 125(4), 530-540.
Mehraban, M., Golkarian, A., Khosravi, Kh., 2018. Evaluation of trench erosion susceptibility using maximum entropy model (Case study: Shorluq region of Khorasan Razavi province), 3rd National Conference on Soil Conservation and Watershed Management , 964-975 (In Persian).
Mir Abbasi Najafabadi, R., Din Pajhooh, Y., Fakheri Fard, A., 2011. Runoff modeling using the principle of maximum entropy (Case study: Kasilian basin). Journal of Agricultural Science and Technology and Natural Resources, Soil and Water Sciences, 15 (58), 39-51 (In Persian).
Montgomery, D.R., Dietrich, W.E., 1994. A physically based model for the topographic control on shallow land sliding. Water Resources Research 30, 1153-1171.
Naghibi, S.A., Pourghasemi, H.R., 2015. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resources Management 29(14), 5217-5236.
Naghibi, S.A., Pourghasemi, H.R., Pourtaghi, Z.S., Rezaei, A., 2015. Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics 8(1), 171-186.
Nasiri, H., Boloorani, A.D., Sabokbar, H.A.F., Jafari, H.R., Hamzeh, M., Rafii, Y., 2013. Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabayghan Basin, Iran). Environmental Monitoring and Assessment 185(1), 707-718.
Oh., H.J., Kim, Y.S., Choi, J.K., Park, E., Lee, S., 2011. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology 399, 158–172.
Oliyayi, A., Parvian, N., Khsravi, O., 2017. Identifying the potential of groundwater resources in hard formations as a solution to manage the water crisis (Case study: Kalat Naderi watershed). Geography and Environmental Hazards 24, 143-158 (In Persian).
Ozdemir, A., 2011a. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology 411, 290–308.
Ozdemir, A., 2011b. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology 405, 123–136.
Paige, G., Stone, J., 1996. Measurement methods to identify and quantify spatial variability of infiltration on rangelands. In: ARS Workshop on “Real World” Infiltration, 109-121.
Piroozinejhad, S., Soleimani, K., Habibnejhad, M., Zakerinejhad, R., 2018. Prediction of gully erosion using Alos sensors and Maxent model in Alvand basin. Iranian Remote Sensing & GIS 9(4), 95–110.
Pourghasemi, H.R., Beheshtirad, M., 2014. Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto International 30(6), 662- 685.
Pourghasemi, H.R., Mohammady, M., Pradhan, B., 2012. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin. Iran. Catena 97, 71–84.
Pourtaghi, Z.S., Pourghasemi, H.R., 2014. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province. Iran. Hydrogeology Journal 22, 643-662.
Prasad, R.K., Mondal, N.C., Banerjee, P., Nandakumar, M.V., Singh, V.S., 2008. Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology 55 (3), 467–475.
Qureshi, M.E., Reeson, A., Reinelt, P., Brozović, N., Whitten, S., 2012. Factors determining the economic value of groundwater. Hydrogeology 21(3), 1-9.
Razandi, Y., Farokhzadeh, B., Yousefzadeh Chabok, M., Teimurian, T., 2017. Applying Maximum Entropy algorithm (MAXENT) in Groundwater potential mapping, Case study: Hamedan-Bahar Plain. Journal of Irrigation and Water Engineering 8(29), 110-123 (In Persian).
Regmi, A.D., Devkota, K.C., Yoshida, K., Pradhan, B., Pourghasemi, H.R., Kumamoto, T., Akgun, A., 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geoscience 7(2), 725–742.
Rittel, H.W., Webber, M. M., 1973. Dilemmas in a general theory of planning. Policy Sciences 4(2), 155-169.
Rwanga, S.S., Ndambuki, J.M., 2017. Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences 8(04), 611.
Saha, A.K., Gupta, R.P., Sarkar, I., Arora, M.K., Csaplovics, E., 2005. An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides 2(1), 61–69.
Salmani, H., Saber Chenari, K., Rostami Khalaj, M., Jahandideh, O., 2016. Performance Comparision of Information Value and Density Area Methods for Spring Existence Potential in Ghurchay Watershed, Golestan Province. Journal of Hydrogeology 1(1), 12- 28 (In Persian).
Sangab Zagros Consulting Engineering Company (SZCEC), 2012. Comprehensive studies of Azna and Aligodarz watershed, Lorestan Province, Project report; Regional Water Company of Lorestan Province: Lorestan, Iran (In Persian).
Sekertekin, A., Marangoz, M., Akcin, H., 2017. Pixel-based classification analysis of land use land cover using Sentinel-2 and Landsat-8 data. Int. Arch. Photogramm. Remote Sensing and Spatial Information Sciences 42, 91-93.
Selvam, S., Dar, F.A., Magesh, N.S., Singaraja, C., Venkatramanan, S., Chung, S.Y., 2016. Application of remote sensing and GIS for delineating groundwater recharge potential zones of Kovilpatti Municipality, Tamil Nadu using IF technique. Earth Science Informatics 9(2), 137-150.
Shannon, C., 1948. A mathematical theory of communication, Bulletin System. Technology Journal 27, 379–423.
Shayan, S., Ahmadabadi, A., Yamani, M., Farajzadeh Asl, M., Kabir, A., 1390. Evaluation of the efficiency of geomorphometric indices by Wood method in the classification of landforms in dry areas. The Journal of Spatial Planning 16 (1), 105-120 (In Persian).
Soares, P.V., Pereira, S.Y., Simoes, S.J.C., de Paula Bernardes, G., Barbosa, S.A., Trannin, I.C.B., 2012. The definition of potential infiltration areas in Guaratingueta watershed, Paraíba do Sul Basin, Southeastern Brazil: an integrated approach using physical and land-use elements. Environmental Earth Science 67, 1685-1694.
Sullivan, M., Warwick, J.J., Tyler, S.W., 1996. Quantifying and delineating spatial variations of surface infiltration in a small watershed. Journal of Hydrology 181, 149-168.
Van Schaik, N., 2009. Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena 78, 36- 47.
Wada, Y., Van Beek, L.P.H., Sperna Weiland, F.C., Chao, B.F., Wu, Y.H., Bierkens, M.F.P., 2012. Past and future contribution of global groundwater depletion to sea-level rise. Geophysical Research Letters 39(9), p.09402.
Wada, Y., Van Beek, L.P.H., Van Kempen, C.M., Reckman, J.W.T.M., Vasak, S., Bierkens, M.F.P., 2010. Global depletion of groundwater resources. Geophysical Research Letters 37(20), p.20402.
Zabihi, M., Pourghasemi, H., Behzadfar, M., 2015. Preparation of groundwater potential map using Shannon entropy and stochastic forest models in Bojnourd plain. Echo Hydrology 2, 221-232 (In Persian).
 Zektser, I.S., 2012. Investigation of Transboundary Aquifers in Russia: Modern State and Main Tasks, Proceedings of NATO Advanced Research Workshop on Sustainable Use and Protection of Groundwater Resources - Transboundary Water Management, pp.79-85.