Geological, mineralogical, and fluid inclusion studies of the Bandan-Neyganan ore district, South Khorasan Province, Iran


1 Department of Geology, Payame Noor University, Tehran, Iran

2 Department of Geology, Lorestan University, Khorramabad, Iran

3 Department of Mining Engineering, Birjand University of Technology, Birjand, Iran


Antimony-Bandan Mining Area of ​​Niagara is located in the Central Iranian Zone and the boundary of the Lut Block and Tabas Block. The dominant lithology in the Antimony Band - Mining area is metamorphic limestones, slits, sandstones and much of the salt and alluvial sediment area. Mineralization of stibenite with galena, pyrite, iron oxide and hydroxide minerals, quartz, barite, and calcite with tissues such as vacuum fillers, veins, shear and dispersed in host rock of Antimony-Bandang Mining Mineral Range. Is. Mineralization has occurred in the Niemannian Antimony Mineral Range at the intervals of marbles from limestone and dolomite metamorphism. The results of quartz mineral microscopy studies indicate that the homogenization temperature of 150 to 265 ° C was detected, the melting temperature of the last ice crystal was -0.3 to -7.5 ° C, and The salinity level of 0.5 to 11 wt% NaCl has been calculated with frequency range of 2 to 3 wt% NaCl. According to statistical, microscopic, and thermometric evidence, the probable genesis of the Antimony-Bond Nangan mineral range is likely to be in the epithermal ore deposit.


Abdi, M., Karimpour, M.H., 2012. Geology, Alteration, Kanizai, Petrogenesis, Senometry, Geochemistry and Geophysics of Exploratory Airborne Kuh-e-Shah, Southwest Birjand. Journal of Economic Geology 1(4), 77-107.
Akcay, M., Ozkan, H.M., Moon, C.J., Spiro, B., 2006. Geology, mineralogy and geochemistry of the gold- bearing stibnite and cinnabar deposits in the Emirli and Halikoy areas (Odemis, Izmir, West Turkey). Ore Geology Reviews 29, 19-51.
Arjmandzadeh, R., 2011. Mineralization, geochemistry, senescence studies and determination of tectono magmatic position of intrusive masses in Deh Salm and Shaljami well mineral index, Lut block, East of Iran, PhD thesis in Economic Geology, Ferdowsi University of Mashhad, p. 369.
Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J.M., Homam, S. M., 2011. Sr-Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, eastern Iran). Journal of Asian Earth Sciences 41, 283–296.
Baba Khani, A.L., Rahimi, M., Jafari Rad, A.L., Sadeghi, M., Del Ara, S.T., 2001. Investigation of the status of antimony reserves to mineralization types, Earth Sciences Conference, Geological Survey of Iran.
Bodnary, R.H., Vityk, M.O., 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusion, in De Vivo, B., Frezootti, M.L., Eds., Fluid inclusion in minerals: Methods and applications: International mineralogical association, Short course of the working group, Inclusions in minerals, 117-130.
Bouzari, F., Clark, A.H., 2006. Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado Hypogene Protore, I Region, Northern Chile. Economic Geolology 101, 95–134.
Dor Kav Mining Company, 2016. Report on the Completion of Neganan Metal Element Exploration Operations, p. 46.
Esmaeily, D., Nedelec, A., Valizadeh, M.V., Moore, F., Cotton, J., 2005. Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences 25, 961-980.
Flugel, E., 2004. Microfacies of Carbonate Rocks. Springer-Verlag, Germany, 976.
Goldstein, R.H., Reynolds, T., 1994. Systematics of fluid inclusions in diagenetic minerals: SEPM Short Course 31, Society for Sedimentary Geology 199, 1-43.
Haas, J.L., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Economic Geolology 66, 940–946.
Haynes, F.M., 1985. Determination of fluid inclusion compositions by sequential freezing. Economic Geology 80, 1436–1439.
Hedenquist, J.W., Arribas, A., 1998. Evolution of an intrusion-centered hydrothermal system: Far southeast Lepanto porphyry and epithermal Cu–Au deposits. Philippines. Economic Geology 93, 373–404.
Hoseynkhany, A., Karimpour, M.H., Malekzadeh Shafaroodi, A., 2016. Sarkhkooh Copper Veins Copper, Lut Block, East Iran: Mineralization Studies, Fluid Intermediates and Stable Oxygen Isotopes. Journal of Earth Sciences 102, 165-176
Karimpour, M. H., Stern, C. R., Farmer, L., Saadat, S., Malekzadeh Shafaroudi, A., 2011. Review of age, Rb–Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran. Journal of Geopersia 1(1), 19–36.
Karimpour, M.H., 2005. Comparison of Qaleh Zari Cu–Au–Ag deposit with other iron oxides Cu–Au (IOCG-Type) deposits and new classification, Iran. Journal of Crystallography 13, 165–184.
Karimpour, M.H., Malekzadeh Shafaroodi, A., Farmer, T., Stern. C.H., 2012. Petrogenesis of Granitoids, U-Pb Zircon Aging, Sr-Nd Geochemistry and Important Occurrence of Tertiary Mineralization in Lut Block, East of Iran. Journal of Economic Geology 1, 1-27.
Karimpour, M.H., Malekzadeh Shafaroodi, A., Mazaheri, S.A., Heydarian, M.R., 2007. Magmatism and all kinds of mineralization of copper, gold, tin and tungsten in Lut block, 15th Conference on Crystal and Mineralogy, Ferdowsi University of Mashhad, Mashhad, Iran.
Karimpour, M.H., Stern, C.R., 2009. Advance spaceborne thermal emission and reflection radiometer (ASTER) mineral mapping to discriminate high sulfidation, reduced intrusion related, and iron oxide gold deposits, eastern Iran. Journal of Applied Science 9, 815-825.
Karimpour. M.H., Zaw. K., Huston. D.L., 2005. S-C-O isotopes, fluid inclusion microthermometry, and the genesis of ore bearing fluids at Qaleh-Zari Fe-oxide Cu-Au-Ag mine, Iran. Journal of Sciences Islamic Republic of Iran 16(2), 153-169.
Lattanzi, P., 1991. Applications of fluid inclusions in the study and exploration of mineral deposits. Europian Journal of Mineral 3, 689–697.
Malekzadeh Shafaroodi, A., 2009. Geology, Mineralization, Alteration, Geochemistry, Microthermometry, Isotopic Studies and Determining the Origin of Mineralization of Mahrabad and Khopik Exploration Areas, South Khorasan Province, PhD Thesis in Economic Geology, Ferdowsi University of Mashhad.
Malekzadeh Shafaroodi, A., Karimpour, M.H., 2012. Mineralogical and thermometric studies of fluids involved in the antimony Sirzar search area northwest of Torbat-e Ham, Khorasan Razavi Province. Iranian Journal of Crystallography and Mineralogy 3, 565-582.
Malekzadeh Shafaroudi, A., Karimpour, M.H., Stern, C.R., 2015. The Khopik porphyry copper prospect, Lut Block, Eastern Iran: Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies. Ore Geology Reviews 65 (2), 522–544.
Mosera, M.R., Rankin, H.A., Milledge., 1991. Hydrocarbon-bearing fluid inclusions in fluorite associated with the Windy Knoll bitumen deposit, UK. Geochimica et Cosmochimica Acta 56, 155-168.
Naden, J., Killias, S.P., Darbyshire, D.P.F., 2005. Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: the example of Milos Island, Greece. Geology 33, 541–544.
Nakhaei, M., Mazaheri, S.A., Karimpour, M.H., Stern, C.R., Zarrinkoub, M.H., Mohammadi, S.S. Heydarian Shahri, M.R., 2015. Geochronologic, geochemical, and isotopic constraints on petrogenesis of the dioritic rocks associated with Fe skarn in the Bisheh area, Eastern Iran. Arabian Journal of Geoscience 1–15.
Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy 12, 644.
Routner, A., Nabavi, M.H., Alavi Naieni, M., 1994. Geological map of Eshgh-Abad, Scale 1:100000, Geological Survey of Iran.
Samiee, S., Karimpour, M.H., Ghaderi, M., Haidarian Shahri, M.R., Klöetzli, U., Santos, J.F., 2016. Petrogenesis of subvolcanic rocks from the Khunik prospecting area, south of Birjand, Iran: Geochemical, Sr–Nd isotopic and U–Pb zircon constraints. Journal of Asian Earth Sciences 115, 170-182.
Shahabpour, J., 2003. Economic Geology, Bahonar University of Kerman Publications, 543.
Shepherd T., Rankin A.H., Alderton D., 1985. A Practical Guide to Fluid inclusions Studies, Blackie, Glasgow, 239.
Shepherd, T.J., Rankin, A.H., Alderton, DHM., 1985. A PracticalGuide to Fluid Inclusion, StudiesBlackie Press,Chapman and Hall, New York, p. 239.
Simmons, S.F., Simpson, M.P. Mauk, J., 2000. The mineral products of boiling in the golden cross epithermal deposit. New Zealand Minerals and Mining Conference Proceedings, 209-216.
Stöcklin, J., Nabavi, M.H., 1969. Geological map of Boshrouyeh, Scale 1:250000, Geological Survey of Iran.
Stöcklin, J., Nabavi, M.H., 1973. Tectonic map of Iran, Geological Survey of Iran.
Van den Kerkhof., A.M., Hein, U.F., 2001. Fluid inclusion petrography. Lithos 55, 27–4.
Whitney, D.L., Evans B.W., 2010. Abbreviations for names of rock–forming mineral. American Mineralogist 95, 185–187.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposit. Lithos 55, 229–72.
Wilson, N.J., Craw, D., Hunter, K., 2004. Contributions of discharges from a historic antimony mine to metalloid content of river waters, Marlborough, New Zealand. Journal of Geochemical Exploration 84, 127-139.
Zhang, Y.G., Frantz, J.D., 1987. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chemical Geology 64, 335-350.