The study of north Makran ophiolitic mélange tectonic setting based on mineral chemistry, southeast of Iran


Department of Geology, Faculty of Science, University of Birjand, Birjand, Iran


The study area, as a part of north Makran ophiolitic melange, is located in Southeast of Iran. This ophiolitic complex contain a relatively complete sequence of oceanic lithosphere with well preserved mantle and crust sequences. The dominant structures are WNW-ESE thrust faults with north-northeast dip resulting a SSW-ward transportion. Peridotite (harzburgite, dunite and lherzolite) is the most abundant rock type in mantle sequence of this complex. Olivine, orthopyroxene, clinopyroxene and a few spinels are the main rock forming minerals, and granular, poikilitic and mesh are their main textures. Electron microprobe analyses of olivine, orthopyroxene, clinopyroxene and spinel in harzburgites and dunites show that olivine is forsterite (Fo:87-90), orthopyroxene is enstatite (En:88-91), clinopyroxene is diopside (En:44-48, Wo:48–52), and spinel is Al-Cr bearing (Spl:54-69, Chr:21–36) type. The mean values of Mg# (Mg#=Mg/(Mg+Fe+2) in olivine, clinopyroxene, respectively are 0.86, 0.92, 0.96 and Cr# (Cr#=Cr/Cr+Al+Fe3+) in spinel is 0.27. The chemical composition of olivine and spinel indicate that the peridotites are of abyssal type, belong to sub-oceanic crust mantle, and endured 10 to 15 % partial melting. Based on discriminant diagrams, Makan peridotites represent mid oceanic ridge affinities with no distinguishable and conclusive subduction influence. Therefore, north Makran ophiolite formed in an extensional basin between the central Iranian microcontinents (Lut block), to the north-northeast, and the continental sliver of Bajkan-Durkan complex to the south-southwest.


Aghanabati, A., Mahdavi, M.A., Arshadi, S., 1987. Geological map of Espakeh, scale 1:100000, Geological Survey of Iran.
Ahmed, A.H., Arai, S., Abdel-Aziz, Y.M., Rahimi, A., 2005. Spinel composition as a petrogenetic indicator of the mantle section in the NW Eoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. Precambrian Research 138, 225-234.
Arai, S., 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine 56, 173–184.
Arai, S., 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships, review and rnterpretation. Chemical Geology 113, 191-204.
Arif, M., Jan, M. Q., 2006. Petrotectonic significance of the chemistry of chromite in the ultramafic mafic complexes of Pakistan. Journal of Asian Earth Sciences 27(5), 628-646.
Arshadi, S., Mahdavi, M.A., Eftekhar-Nezhad, J., 1987. Geological map of Fannuj, scale 1:100000, Geological Survey of Iran.
Arthurton, R.S., Farah, A., Ahmed, W., 1982. The Late Cretaceous-Cenozoic history of western Baluchistan, Pakistan - The northern edge of the Makran subduction complex. In: Legett, J.K. (Ed.) Trench-forearc geology: Sedimentation and tectonics on modern and ancient active plate margins. London, Geological Society of London, Special Publications, 373-385.
Beccaluva, L., Girolamo, D., Maciotta, G., Morra, V., 1983. Magma affinities and fractionation trends in ophiolite. Ofioliti 8, 307–324.
Berberian, F., Muir, I.D., Pankhurst, R.J., Berberian, M., 1982. Late Cretaceous and Early Miocene Andean-Type Plutonic Activity in Northern Makran and Central Iran. Journal of the Geological Society 139, 605-614.
Bonatti, E., Michael, P.J., 1989. Mantle Peridotites from Continental Rifts to Ocean Basins to Subduction Zones. Earth and Planetary Science Letters 91, 297-311.
Choi, S.H., Shervais, J.W., Mukasa, S.B., 2008. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contributions to Mineralogy and Petrology 156(5), 551-571.
Conrad, W.K., Kay, R.W., 1984. Ultramafic and mafic inclusions from Adak Island: crystallisation history and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. Journal of Petrology 25, 88-125.
DeMets, C., Gordon, R.G., Argus, D.F., 2010. Geologically current plate motions. Geophysical Journal International 181, 1-80.
Dick, H.J.B., 1989. Abyssal peridotites, very low spreading ridge and ocean ridge magmatism. In: Saunders AD, Norry MJ (Ed.) Magmatism in the ocean basins. Geological Society London Special Publications 42, 71-106.
Dick, H.J.B., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal Alpine type peridotites and spatially associated lavas. Contribiution to Mineralogy and Petrology 86, 54 -76.
Dolati, A., 2010. Stratigraphy, structural geology and low-temperature thermochronolgy across the Makranaccretionary wedge in Iran, Ph.D. Thesis, Swiss Institute of Technology (ETH).
Donnelly, K.E., Goldstein, S.L., Langmuir, C.H., Spiegelman, M., 2004. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters 226, 347-366.
Droop, G.T.R., 1987. A general equation for estimating Fe 3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51, 431-435.
Eftekhar-Nezhad, J., Arshadi, S., Mahdavi, M.A., Morgan, K.H., McCall, G.J.H., Huber, H., 1979. Fannuj Quadrangle Map 1:250'000. Tehran. Ministry of Mines and Metal, Geological Survey of Iran.
Haghipour, N., Burg, J.P., Kober, F., Zeilinger, G., Ivy-Ochs, S., Kubik, P.W., Faridi, M., 2012. Rate of crustal shortening and non-Coulomb behaviour of an active accretionary wedge: The folded fluvial terraces in Makran (SE, Iran). Earth and Planetary Science Letters 355, 187-198.
Hirose, K., Kawamoto, T., 1995. Hydrous partial melting of lherzolite at 1 GPA: Effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters 133, 463-473.
Hunziker, D., Burg, J.P., Bouilhol, P., Von Quadt, A., 2015. Jurassic rifting at the Eurasian Tethys margin: Geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics 34, 571–593.
Hunziker, D., Burg, J.P., Moulas, E., Reusser, E., Omrani, J., 2017. Formation and preservation of fresh lawsonite: Geothermobarometry of the North Makran Blueschists, southeast Iran. Metamorphic Geology 65, 1–25.
Irvine, T.N., 1967. Chromian spinel as a petrogenetic indicator, part n. Petrologic applications. Canadian Journal of Earth Sciences 4, 71-103.
Irvine, T.N., 1982. Terminology for leyered intrusions. Journal of Petrology 23, 127-162.
Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal Petrology 42, 655–671.
Kepezhinskas, P.K., Defant, M.J., Drummond M.S., 1995. Na metasomatism in the island-arc mantle by slab melt- peridotite interaction: evidence from mantle xenoliths in the North Kamchatka arc. Journal of Petrology 36, 1505-1527.
Kornprobst, J., Ohnenstetter, D., Ohnenstetter, M., 1981. Na and Crcontents in Cpx from peridotites: a possible discriminant between sub-continental and sub-oceanic mantle. Earth and Planetary Science Letters 53, 241-254.
Maurel, C., Maurel, P., 1982. Étude expérimentale dela distribution de láluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: teneur en chrome des spineless", Bulletin de Minéralogie 105, 197-202.
McCall, G.J.H., 1997. The geotectonic history of the Makran and adjacent areas of southern Iran. Journal of Asian Earth Sciences 15, 517-531.
McCall, G.J.H., Eftekhar-Nezhad, J., Samimi-Namin, M., Arshadi, S., 1985. Explanatory Text of the Fannuj Quadrangle Map 1:250,000. In: McCall, G.J.H. (Ed.). Tehran, Ministry of Mines and Metals, Geological Survey of Iran.
McCall, G.J.H., Kidd, R.G.W., 1982. The Makran, southeastern Iran; the anatomy of a convergent plate margin active from Cretaceous to present. In: Jeremy, K.L. (Ed.) Trench-Forearc geology; sedimentation and tectonics on modern and ancient active plate margins. Conference, London, United Kingdom, Geological Society of London, 387 -397.
Mercier, J.C.C., Nicolas, A., 1975. Textures and Fabrics of Upper-Mantle Peridotites as Illustrated by Xenoliths from Basalts. Journal of Petrology 16, 454-487.
Moradpour, A., Zarei, R., Ahmadi, A., Sarikhani, R., 2017. Textural records and geochemistry of the Kermanshah mantle peridotites (Iran): Implications for the tectonic evolution of southern Neo-Tethys. Journal of Geosciences 62, 165–186.
Morgan, K.H., McCall, G.J.H., Huber, H., 1987a. Geological map of Ramak, scale 1:100000, Geological Survey of Iran.
Morgan, K.H., McCall, G.J.H., Huber, H., 1987b. Geological map of Remeshk, scale 1:100000, Geological Survey of Iran.
Morimoto, N., 1988. Nomenclature of pyroxenes. Mineralogical Magazine 52, 535-550.
Morimoto, N., Kitamura, M., 1983. Q–J diagram for classification of pyroxenes. Journal Japan Association Mineralogical Sciences 78, 141-165.
Morishita, T., Hara, K., Nakamura, K., Sawaguchi, T., Tamura, A., Arai, S., Okino, K., Takai, K., Kumagai, 2009. Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the Central Indian Ridge. Petrology 50 (7), 1299-1325.
Moslempour M.E., Khalatbari Jafari M., Ghaderi M., Yousefi H., Shahidi, S., 2015. Petrology, geochemistry and tectonic of the extrusive sequence of Fannuj-Maskutan ophiolite, southeastern Iran. Journal Geological Society of India 85, 604-618.
Moslempour, M.E., Khalatbari Jafari, M., Morishita, T., Biabangard, H., 2017. Petrogenesis of mantle peridotites from the South of Jazmourian, Makran accretionary prism, Iran. Iranian Journal of Earth Sciences 9, 1-16.
Nicolas, A., Boudinier, F., Ildefonse, B., 1994. Dike pattern in Diapirs beneath Ocean Ridges: The Oman Ophiolite. In: Ryan, M. P. (Ed.) Magmatic Systems. Virginia: U. S. Geological Survey, 77-95.
Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology 139, 36-53.
Rospabe, M., Ceuleneer G., Benoit, M., Abily, B., Pinet, P., 2017. Origin of the dunitic mantle-crust transition zone in the Oman ophiolite: The interplay between percolating magmas and hightemperature hydrous fluids: Geological Society of America.
Suhr, G., 1993. Evaluation of Upper-Mantle Microstructures in the Table Mountain Massif (Bay of Islands Ophiolite). Journal of Structural Geology 15, 1273-1292.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, M., Bayer, R., Tavakoli, F., Chéry, J., 2004. Contemporary Crustal Deformation and Plate Kinematics in Middle East Constrained by GPS Measurements in Iran and Northern Oman. Geophysical Journal International 157, 381-398.
Wager, L.R., Deer, W.A., 1939. Geological investigations in East Greenland, Part III. The petrology of the Skaergaard intrusion, Kangerrdlugssuaq, East Greenland, Meddelelserom Gronland 105, 1-352.
Wilson, M., 2007. Igneous Petrogenesis. Springer Dordrecht, p. 466.
Withney, D., Evans, B., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187.
Zanetti, A., D’Antonio, M., Spadea, P., Raffone, N., Vannucci, R., Brugeir, O., 2006. Petrogenesis of mantle peridotites from the Izu-Bonin-Mariana (IBM) forear. Ofioliti 31, 189-206.
Zhou, M. F., Bai, W. J., 1992. Chromite deposits in China and their origin. Mineralium Deposita 27, 192–199.