Application of electron microprobe studies to determining genesis of chromite mineralization in the Qaranaz - Alamkandi area, west of Zanjan

Authors

1 Department of Geology, Faculty of Sciences, University of Zanjan, Zanjan, Iran

2 Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

Abstract

The studied chromite mineralization in the Gharanaz-Alamkandi area is located in the west of Zanjan province and Sanandaj-Sirjan zone. The outcrops rock units consist of amphibolite, granitic gneiss, marble, amphibol schist, garnet mica schist and also ultrabasic sequences. Chromite mineralization occurred as lenzoid, veinlets and disseminated within the peridotite rocks such as serpentinized dunite, serpentinized harzburgite and serpentinit. Olivine, orthopyroxene, clinopyroxene, serpentine, asbestos, chromite and magnetite are the main minerals at these rock units. Mineral chemistry of olivines indicate that the olivines in the peridotites are rich in magnesium and show forsterite composition. Clinopyroxene in the peridotites of the study area are iron- magnesium-calcium rich with mainly are augite in composition. Orthopyroxene minerlas show mainly brunzite composition with minor amounts of hypersthene composition. The mineral chemistry of chromspinels indicate that the chromite mineralization in the study area is podiform type which enriched in Cr and Mg and depleted in Ti. In addition, the mineral chemistry studies in this area show that the host rocks of chromite mineralization and dunite- lherzolite sufferd at least 20% and 40% partial melting, rspectively. On the other hands, it can be state that both of partial melting and depleted mantle melthad important role in the formation of peridotite in the study area. According to this study, it can be note that the chromite mineralization in the study area is ophiolite type mineralization and formed from a boninitic magma in the supra subduction zone during the subduxtion of Proto-Tethys ocean beneath the Iranian block Precambrian-Cambrian time.

Keywords


Ahmed, A.H., 2013. Highly depleted harzburgite–dunite–chromitite complexes from the Neoproterozoic ophiolite, southeastern Desert, Egypt: A possible recycled upper mantle lithosphere. Precambrian Research 233, 173–192.
Ahrabian Fard, P., 2018. Geology, geochemistry and genesis of chromite mineralization of Qaranaz- Alamkandi area, west of Zanjan, Iran, M.Sc. Thesis, University of Zanjan, Zanjan, Iran.
Alavi, M., Amidi, M., 1976. Geological map of the Takab region with scale of 1: 250,000, Geological Survey of Iran, Tehran, Iran.
Allan, J.F., 1994. Cr-spinel in depleted basalts from the Lau basin back-arc: Petrogenetic history from Mg–Fe crystal–liquid exchange. In: Proceedings of the Ocean Drilling Program (Hawkins, J., Parson, L., Allan, J.F., et al.), Scientific Results 135, 565–583.
Allégre, C.J., Le Mouel, J.L., Provost, A., 1982. Scaling rules in rock fracture and possible implications for earthquake prediction. Nature 297(5861), 47.
Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Suda, T., 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2), 149-61.
Arai, S., Ishimaru, S., 2008. Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: A review. Journal of Petrology 49, 665–695.
Arai, S., Matsukage, K., 1998. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: a comparison between abyssal and alpine-type podiform chromitites. Lithos 43(1), 1-14.
Arai, S., 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine 56, 173–184.
Arai, S., 1994a. Characterization of spinel peridotites by olivine–spinel compositional relationships: Review and interpretation. Chemical Geology 113, 191– 204.
Arai, S., 1994b. Compositional variation of olivine–chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. Journal of Volcanology and Geothermal Research 59, 279–293.
Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, K., Ishimaru, S., 2011. Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting. Island Arc 20, 125–137.
Arai, S., Tamura, A., Ishimaru, S., Kadoshima, K., Lee, Y.I., Hisada, K. I., 2008. Petrology of the Yugu peridotites in the Gyeonggi Massif, South Korea: Implications for its origin and hydration process. Island Arc 17(4), 485-501.
Arai, S., Uesugi, J., Ahmed, A.H., 2004. Upper crustal podiform chromitite from the northern Oman ophieolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration. Contribution to Mineralogy and Petrology 147, 145-154.
Babakhani, A., Ghalamghash, J., 1996. Geological map of the Takhte Soleiman region with scale of 1: 100,000, Geological Survey of Iran, Tehran, Iran.
Barnes, S.J., Roeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology 42, 2279-2302.
Batanova, V.G., Pertsev, A.N., Kamenetsky, V.S., Ariskin, A.A., Mochalov, A.G., Sobolev, A.V., 2005. Crustal evolution of island-arc ultramafic magma: Galmoenan pyroxenite–dunite plutonic complex, Koryak Highland (Far East Russia). Journal of Petrology 46, 1345-1366.
Batiza, R., Shcheka, S., Tokuyama, H., Muehlenbachs, K., Vallier, T., Lee-Wong, F., Fujii, N., 1981. Summary and index to petrologic and geochemical studies of Leg 61 basalts. Init. Rep. DSDP, 829-839.
Bloomer, S.H., Fisher, R.L., 1987. Petrology and geochemistry of igneous rocks from the Tonga trench – a non-accreting plate boundary. Journal of Geology 95, 469– 495.
Bloomer, S.H., Hawkins, J.W., 1983. Gabbroic and ultramafic rocks from the Mariana Trench: An island arc ophiolite. The Tectonics and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, AGU Geophysical Monograph 23, American Geophysical Union, pp. 294–317.
Bonavia, F.F., Diella, V., Ferrario, A., 1993. Precambrian podiform chromitites from Kenticha Hill, southern Ethiopia. Economic Geology 88(1), 198-202.
Buchl, A., Brugmann, G., Batanova, V.G., 2004. Formation of podiform chromitite deposits: Implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chemical Geology 208(1-4), 217-232.
Deer, F.R.S.W.A., Howier, R.A. and Zussman, J., 1991. An introduction to the rock-forming minerals, Longman Scientific and Technical, 582 p.
Deer, W.A., Howie, R. A., Zussman, J., 1992. An introduction to the rock-forming minerals. Hong Kong: Longman scientific & technical 2, p. 558.
Dick, H.J., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86(1), 54-76.
Dönmez, C., Keskin, S., Günay, K., Çolakoğlu, A.O., Çiftçi, Y., Uysal, İ., Yıldırım, N., 2014. Chromite and PGE geochemistry of the Elekdağ Ophiolite (Kastamonu, Northern Turkey): Implications for deep magmatic processes in a supra-subduction zone setting. Ore Geology Reviews 57, 216-228.
Ferrario, A., Garuti, G., 1987. Platinum-group minerals in chromite-rich horizons of the Niquelandia complex (central Goias, Brazil). In Geo-Platinum 87 (H.M. Prichard, P.J. Potts, J.F.W. Bowles., S. Cribb), Elsevier Applied Science, London, U.K., pp. 261-272.
Gaetani, M., Anigolini, L., Garzanti, E., Jadoul, F., Leven, E.Y., Nicora, A., Sciunnach, D., 1995. Permian stratigraphy in the northern Karakorum, Pakistan. Rivista Italiana di Paleontologia e Stratigrafia 101, 107-152.
Garuti, G., Pushkarev, E.V., Zaccarini, F., 2005. Diversity of chromite-PGE mineralization in ultramafic complexes of the Urals. In: Platinum Group Elements - From Genesis to Benefication and Environmental Impact (Törmänen, T.O., Alapieti, T.T.), 10th International Platinum Symposium, Oulu (Finland). Extended Abstracts, pp. 341–344.
Gonzalez Jimenez, J.M., Proenza, J.A., Gervilla, F., Melgarejo, J.C., Blanco-Moreno, J.A., RuizSánchez, R., Griffin, W.L., 2011. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinumgroup elements. Lithos 125, 101–121.
Graham, I.T., Franklin, B.J., Marshall, B., 1996. Chemistry and mineralogy of podiform chromitite deposits, southern NSW, Australia: A guide to their origin and evolution. Mineralogy and Petrology 37, 129–150.
Grove, T.L., Parman, S.W., Dann, J.C., 1999. Conditions of magma generation for Archean komatiites from the Barberton Mountainland, South Africa. In: Mantle Petrology (Fei, Y., Bertka, C.M., Mysen, B.O.,); Field Observations and High Pressure Experimentation; a tribute to Francis R. (Joe) Boyd 6, pp.155-167.
Hirose, K., Kawamoto, T., 1995. Hydrous partial melting of lherzolite at 1 Gpa: The effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters 133, 463–473.
Irvine, T.N., 1967. Chromian spinel as a petogenetic indicator (part 2). Petrologic applications. Canadian Jornal of Eart Scifnces 4, 71-103.
Ishii, T., Robinson, P.T., Maekawa, H., Fiske, R., 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Ogasawara–Mariana forearc. In: Proceedings of the Ocean Drilling Program Scientific Results 125 (Fryer, P., Pearce, J.A., Stokking, L.B.,), Ocean Drilling Program, College Station, TX, pp. 445–485.
Ishikawa, T., Nagaishi, K., Umino, S., 2002. Boninitic volcanism in the Oman ophiolite: Implications for thermal condition during transition from spreading ridge to arc. Geology 30(10), 899-902.
Jan, M.Q., Windley, B.F., 1990. Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex, Northwest Pakistan. Journal of Petrology 31(3), 667-715.
Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology 42(4), 655-671.
Leblanc, M., Nicolas A., 1992. Les chromitites ophiolitiques. Chronique de la Recherche Minier 507, 3-25.
Malpas, J., Robinson, P.T., Zhou, M.F., 1997. Chromite and ultramafic rock compositional zoning through a paleotransform fault, Poum, New Caledonia: discussion. Economic Geology 92, 502–503.
McLaren, C.H., De Villiers, J.P.R., 1982. The platinum-group chemistry and mineralogy of the UG-2 chromitite layer of the Bushveld Complex. Economic Geology 77, 1348–1366.
Mondal, S.K., Frei, R., Ripley, E.M., 2007. Os isotope systematics of mesoArchean chromitite-PGE deposits in the Singhbhum Craton (India): Implications for the evolution of lithospheric mantle. Chemical Geology 244, 391-408.
Mondal, S.K., Ripley, E.M., LI, C., Frei, R., 2006. The genesis of Archean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India. Precambrian Research 148, 45-66.
Morimoto, N., 1989. Nomenclature of pyroxenes. Mineralogical Journal 14(5), 198-221.
Pagé, P., Barnes, S.J., 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Economic Geology 104(7), 997-1018.
Parkinson, I.J., Pearce, J.A., 1998. Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology 39(9), 1577-1618.
Parman, S.W., Grove, T.L., Dann, J.C., 2001. The production of Barberton komatiites in an Archean subduction zone. Geophysical Research Letters 28(13), 2513-2516.
Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contributions to Mineralogy and Petrology 139(1), 36-53.
Pearce, J.A., Lippard, S.J., Roberts, S., 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications 16(1), 77-94.
Peck, D.C., Keays, R.R., 1990. Geology, geochemistry, and origin of platinum-group element-chromitite occurrences in the Heazlewood River Complex, Tasmania. Economic Geology 85, 765–793.
Proenza J., Gervilla F., Melgarejo J.C., Bodinier J.L., 1999. Al and Cr rich chromitites from the Mayari-Baracoa ophiolitic belt (eastern Cuba), Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology 94, 547-566.
Rollinson, H., Adetunji, J., 2013. Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite. Lithos 177, 314-327.
Rollinson, H., 2005. Chromite in the mantle section of the Oman ophiolite: A new genetic model. Island Arc 14, 542-550.
Sattari, P., Brenan, J.M., 2002. Experimental Constraints on the Sulfide- and Chromite-Silicate Melt Partitioning Behavior of Rhenium and Platinum-Group Elements. Economic Geology 97, 385–398.
Stern, R.J., 2004. Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters 226(3-4), 275-292.
Stocklin, J., 1968. Structural history and tectonics of Iran: A review. American Association of Petroleum Geologist Bulletin 52(7), 1229–1258.
Stockman, H.W., Hlava, P.F., 1984. Platinum-group minerals in alpine chromitites from southwestern Oregon. Economic Geology 79, 491–508.
Tarkian, M., Naidenova, E., Zhelyaskova-Panayotova, M., 1991. Platinum-group minerals in chromitites from the eastern Rhodope Ultramafic Complex, Bulgaria. Mineralogy and Petrology 44, 73–87.
Thy, P., 1983. Spinel minerals in transitional and alkali basaltic glasses from Iceland. Contributions to Mineralogy and Petrology 83, 141–149.
Uysal, M., Ar, I., 2007. Removal of Cr (VI) from industrial wastewaters by adsorption, Part I: Determination of optimum conditions. Journal of Hazardous Materials 149(2), 482-491.
Walker, D.A., Cameron, W.E., 1983. Boninite primary magmas: Evidence from the Cape Vogel Peninsula, PNG. Contributions to Mineralogy and Petrology 83(1-2), 150-158.
Wilson, A.H., Shirey, S.B., Carlson, R.W., 2003. Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle. Nature 423(6942), 858.
Zhou, M.F., Bai, W.J., 1992. Chromite deposits in China and their origin. Mineralium Deposita 27, 192–199.
Zhou, M.F., Robinson, P.T., Bai, W.J., 1994. Formation of podiform chromitites by melt-rock interaction in the upper mantle. Mineralium Deposita 29(1), 98-101.
Zhou, M.F., Robinson, P.T., Malpas, J., Li, Z., 1996. Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle: Journal of Petrology 37(1), 3-21.
Zhou, M.F., Sun, M., Keays, R., Kerrich, R., 1998. Control on platinum group elemental distributions of podiform chromitites: a case study of high Cr and high Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta 62, 677-688.