Mineralogical investigation and water absorption of bentonites in Momen Abad area, to be used in pelletizing industry and a comparison with some other bentonite mines in Eastern Iranian Bentonite Zone

Sahar Tarabi1*, Soroush Modabberi2

1-Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
2-School of Geology, College of Science, University of Tehran, Tehran, Iran

Keywords: Water absorption, Pelletizing, Bentonite, Momen Abad, Eastern Iran

1-Introduction

Bentonite deposits of Iran occur in six zones: Semnan-Torud, Alborz-Azerbaijan, Eastern Iran, Central Iran, Tafresh - Takab, and Zagros. They are mostly related to Cenozoic volcanic activity. Momen Abad Mining area is located in the northeast of Sarbisheh in South Khorasan province and southeast of Birjand and is a part of the Eastern Iranian Bentonite Zone (Hejazi and Ghorbani, 1994; Modabberi et al., 2019) (Fig. 1).

Bentonite is one of the main additives in the pelleting industry. Sodium bentonite is suitable for iron ore pelleting due to its higher swelling power and water absorption above 600 (Murray, 1991; Devaney, 1956) and high dry strength in iron ore pellets after iron ore sintering and condensation (Murray, 2002; 2007). Bentonite is the best bonding agent for iron ore particles as well as the major strength factor and an essential factor in preventing cracking of pellets (Mohamed et al., 2003).

Previous studies on mineralogy, geochemistry, mass changes, and bentonite formation processes have been performed on bentonite deposits in the Eastern Bentonite Zone of Iran (Karimpour et al., 2003; Karimpour and Malekzadeh Shafarodi, 2015; Namayandeh et al., 2012 and 2015; Modabberi et al., 2015; 2019; Tarabi et al., 2017a-b, 2019; Tarabi, 2018). Also, researchers have investigated the use of Eastern Iranian bentonites in the pharmaceutical applications (Modabberi et al., 2015), oil drilling (Tarabi et al., 2019), and casting (Karimpour et al., 2003). Since bentonites have been studied all over the world in the iron pelleting industry (Murray, 1991–2002 and 2007; Mohamed et al., 2003; Allo and Murray., 2004) however, the mineralogy and industrial applications of bentonites in Iran and especially in Momen-Abad area have not been yet studied in this industry. To study the application of bentonites in the pelleting industry, as well as water absorption factor in sodium bentonites of the Momen-Abad area and 8 other mines in Eastern Iranian Bentonite Zone, are investigated in this paper.

2- Methodology

About 100 samples of bentonite and altered rocks were collected from Momen Abad and other deposits. To perform water absorption tests, 86 samples were taken from trenches, wells, and high-quality dumps in the central part of the mine. Also, 16 bentonite samples from eight mine in the Eastern Iranian Bentonite Zone, namely Sanajan, Tighab, Deheshk, Gholegolkon, Khoshal, Ebrahimi, Mortezanajad and Shirazi, as well as 2 samples from Momen Abad mine. A total of 104 samples have been sent to Pars Gohar Powder Company for water absorption testing. X-Ray Diffraction (XRD) studies were performed on three air-dried and ethylene glycol solvated samples to study mineralogy and the mineralogical effect composition on water absorption. Scanning Electron Microscopy Image (SEM) and SEM-Energy Dispersive X-Ray Spectrometer (SEM-EDX) were also performed on one bentonite lump sample, and two bentonite powder samples (B05-B06) and 12 points were analyzed.

*Corresponding author: sahartarabi50@yahoo.com
Received 2019-05-11
Accepted 2020-01-20
Fig. 1. Distribution of Iranian bentonite deposits on a geological framework on which the Momen Abad area is shown by a red solid square in the Eastern Iranian Bentonite zone, EIBZ: Eastern Iranian Bentonite Zone, green: CIBZ, blue: Zagros Bentonite Zone, TTBZ: Tefresh - Takab Bentonite Zone, AABZ: Alborz - Azerbaijan Bentonite Zone, STBZ: Semnan - Toroud Bentonite Zone) Tarabi et al., 2019.

3-Findings

3-1- X-ray diffraction (XRD)

Mineralogical studies revealed the presence of cristobalite and smectite as the main phases, and plagioclase feldspar, alkali feldspar, zeolite (heulandite and/or clinoptilolite), mica-illite, amorphous silica, and calcite occur as the minor phases.

3-2- Scanning Electron Microscopy (SEM) – Energy Dispersive X-Ray Spectrometry (EDS/EDX)

Scanning electron microscopy of bentonite clumps indicates that smectite clays show wavy sheet-like morphology with overgrowth of cristobalite, and bentonite sheet grains occur as aggregates flocculated appearance and spherical and angular grains with popcorn texture. Energy Dispersive X-ray Spectrometer of 12 points show that montmorillonite is a significant component of bentonite. It was found out, based on the Na and Ca contents, that the bentonites are compositionally Na members (Table 1).

Table 1. Numerical results of EDX spectroscopy at 12 points.

<table>
<thead>
<tr>
<th>Phases</th>
<th>O</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>Fe</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Cl</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>(wt%)</td>
<td></td>
</tr>
<tr>
<td>B05- Spot 1</td>
<td>Qz</td>
<td>53.2</td>
<td>1.51</td>
<td>0.79</td>
<td>4.81</td>
<td>38.7</td>
<td>0.68</td>
<td>0.14</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B05- Spot 2</td>
<td>Qz+Clay</td>
<td>45.9</td>
<td>1.56</td>
<td>1.84</td>
<td>8.33</td>
<td>36</td>
<td>1.65</td>
<td>2.43</td>
<td>0.5</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>B05- Spot 3</td>
<td>Qz+Clay</td>
<td>50</td>
<td>1.40</td>
<td>0.77</td>
<td>4.54</td>
<td>41.8</td>
<td>0.26</td>
<td>0.28</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>B05- Spot 4</td>
<td>Qz</td>
<td>52.2</td>
<td>1.11</td>
<td>0.70</td>
<td>2.31</td>
<td>43</td>
<td>0.42</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B05- Spot 1</td>
<td>Na-Sme</td>
<td>48.9</td>
<td>1.56</td>
<td>1.67</td>
<td>9.53</td>
<td>34.9</td>
<td>2.01</td>
<td>1.04</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B05- Spot 2</td>
<td>Na-Sme</td>
<td>51.6</td>
<td>1.40</td>
<td>1.86</td>
<td>9.3</td>
<td>33.5</td>
<td>1.23</td>
<td>0.91</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B05- Spot 1</td>
<td>Na-Sme</td>
<td>48.4</td>
<td>7</td>
<td>1.09</td>
<td>11</td>
<td>28.9</td>
<td>0.46</td>
<td>0.68</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B05- Spot 2</td>
<td>Na-Sme</td>
<td>47.7</td>
<td>1.60</td>
<td>1.41</td>
<td>6.79</td>
<td>39.5</td>
<td>1.03</td>
<td>1</td>
<td>0.6</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>B05- Spot 3</td>
<td>Na-Sme</td>
<td>50.8</td>
<td>1.93</td>
<td>1.70</td>
<td>7.01</td>
<td>35.7</td>
<td>1.05</td>
<td>0.98</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>B06- Spot 1</td>
<td>Na-Sme</td>
<td>49.4</td>
<td>1.62</td>
<td>1.50</td>
<td>7.47</td>
<td>35.9</td>
<td>1.59</td>
<td>2.02</td>
<td>0.3</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>B06- Spot 3</td>
<td>Na-Sme</td>
<td>53.3</td>
<td>1.48</td>
<td>1.71</td>
<td>9.56</td>
<td>30</td>
<td>1.34</td>
<td>2.07</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>B06- Spot 1</td>
<td>Na-Sme</td>
<td>47.4</td>
<td>1.07</td>
<td>0.99</td>
<td>5.64</td>
<td>42.4</td>
<td>0.8</td>
<td>1.23</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-3-Water absorption
Figure 2 presents the water absorption results of the Momen Abad mine. Accordingly, the percentage of water absorption from the base to the bottom of the trench (about 15 meters deep) and the stored materials in dumps is variable. Thus, from the trench base to the location of sample 52, the average water adsorption is about 401; however, from sample 53 to the bottom of the trench, the percentage of water adsorption is 503. Examination of boreholes indicates that only BH-03 has more than 400% water absorption, and the rest has less than 300% water absorption. TR1-2M, TR1-39M, and DP1-4M show the lowest water absorption of samples. The highest water absorption was reported for TR1-3M, TR1-27M, TR1-68M, and DP1-8M samples. The average water absorption percentage of the main bentonite dump is about 440, and the small dump at the base of the trench has a 540% water absorption. These studies show that the quality of bentonites in deeper zones increases in bentonite zones due to the leaching of the elements (Özdamar et al., 2014). Since the samples with these values were taken from the surface, it is proposed that bentonites have much better quality in deeper parts.

Table 2 shows the results of water absorption from other mines. These results show that two mines of Deheshk (sample B151) with 680 water absorption and Gholegolkon mine (sample B142) with 342 water adsorption have acceptable water absorption results the bentonite mines in the eastern bentonite zone of Iran. Considering the vital factor of water absorption of bentonites in the pellet industry (water absorption above 600) and their sodium type, it seems that these three mines, respectively, two mines of Deheshk and Momen Abad, are suitable for the pelleting industry.

Table 2. Water absorption results of 18 samples from different mines.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B139</td>
<td>Sanajan</td>
<td>108</td>
<td>B153</td>
<td>Gholegolkon</td>
<td>228</td>
<td>B146</td>
<td>Shirazi</td>
<td>158</td>
</tr>
<tr>
<td>B140</td>
<td>Sanajan</td>
<td>182</td>
<td>B151</td>
<td>Deheshk</td>
<td>680</td>
<td>B147</td>
<td>Shirazi</td>
<td>146</td>
</tr>
<tr>
<td>B141</td>
<td>Khoshal</td>
<td>78</td>
<td>B154</td>
<td>Tighab</td>
<td>148</td>
<td>B152</td>
<td>Mortezanejad</td>
<td>190</td>
</tr>
<tr>
<td>B143</td>
<td>Khoshal</td>
<td>110</td>
<td>B156</td>
<td>Tighab</td>
<td>94</td>
<td>B155</td>
<td>Mortezanejad</td>
<td>130</td>
</tr>
<tr>
<td>B149</td>
<td>Khoshal</td>
<td>126</td>
<td>B144</td>
<td>Ebrahimi</td>
<td>182</td>
<td>B148</td>
<td>Momen Abad</td>
<td>626</td>
</tr>
<tr>
<td>B142</td>
<td>Gholegolkon</td>
<td>324</td>
<td>B145</td>
<td>Ebrahimi</td>
<td>198</td>
<td>B150</td>
<td>Momen Abad</td>
<td>446</td>
</tr>
</tbody>
</table>

4-Conclusions

The mineralogical studies indicate that cristobalite and smectite occur as major phases in bentonite samples, and the lack or scarcity of crystalline phases like quartz as a minor phase may be an advantage in the application of bentonites in the pelletizing industry. According to electronic imaging, the bentonites are composed of smectitic clays with wavy sheets and irregular rims that favor the pelletizing application. Sheet-like grains of bentonite show flocculated appearance and spherical and angular grains with popcorn texture. The XRD results prove that bentonites are composed of Na-montmorillonite type, swelling, and high water absorption capacities that follow the specification needed for pelletizing usage.

Water absorption tests were performed on 88 samples of Momen Abad (74 samples from trenches, 11 samples from dumps, three samples from boreholes), and 16 samples taken from other mines in the area. The tests show that samples from Momen Abad possess a lower water absorption of 401 despite the favorable morphology and mineralogy because they were taken from the surface so that the surface samples are not qualified for this purpose. The deep-seated samples were proved to have higher absorption of 600-800% favorable for pelletizing. Compared with other bentonite mines in the area, Momen Abad samples show acceptable water absorption levels and are applicable in pelletizing according to their tests and mineralogy, and Deheshk mine samples are also favorable based on their water absorption tests.
Fig. 2. Water absorption percentages of Momen-Abad mine.

References

Tarabi, S., Emami, M.H., Modabberi. S., 2017a. Study of diagenetic and hydrothermal alteration in stratigraphy section of Momen-abad (North- East of Sarbisheh, Birjand) and its role of them in non-metallic mineralization. 4th YES Congress.

HOW TO CITE THIS ARTICLE:

DOI: 10.22055/AAG.2020.29487.1982
url: https://aag.scu.ac.ir/article_15344.html?lang=en
چکیده
منطقه علمی مؤمن ایذهی از زون بتنویهای خار ایران است. نتایج کانالیتش با همکاران نشان می‌دهد که به‌طور طبیعی SEM و تصاویر بازیابی شده در صنعت بتنویه‌های از گندله‌های خار نشان می‌دهد که کنترلی‌های دیاژنتیک برای تولید در صورت خشک شدن گندله‌های خار این کانال را می‌تواند. این کنترل دیاژنتیک همزمان با تغییرات جرم و روند شناسی و همچنین با تغییرات جرم و روند شناسی و سیاست‌های تولید در صنعت.

مقدمه
بتنویه‌ها، به طور عمده از گونه‌های مکروپورولوئیت (مونتومورولوئیت) تشکیل شده‌اند. مونومورولوئیت سبدی سبز کم‌گول‌زدایی نگهداری شده به‌صورت هیدرالیسیت است.

تشکیل‌دهنده این کانالیت‌ها در نیمه‌دریافتی را برای کاربرد در صنعت نیست. در نیمه‌دریافتی، هر گونه آب‌های خشک و دمای بالا به‌طور عمده در صنعت استفاده می‌شود.

تشکیل‌دهنده این کانالیت‌ها در نیمه‌دریافتی را برای کاربرد در صنعت نیست. در نیمه‌دریافتی، هر گونه آب‌های خشک و دمای بالا به‌طور عمده در صنعت استفاده می‌شود.
در منطقه خراسان رضوی و شهرستان کشک در شش زون بنتونیتی به وجود می‌آیند. این مناطق شامل کانسارهای درودگر در منطقه کاشمر و بردسکن، کانسار کوه در نواحی تربت حیدریه، تربت جام، کاشمر، گناباد، بیرجند، سرایان و فردوس زون خاور ایران است.

شکل 1 نشان دهنده موقعیت زون‌های بنتونیتی ایران و منطقه آنها به وسیله دو کره فرم در زون بنتونیتی خاور ایران است. این شکل نشان داده شده است. بیشتر زون بنتونیتی خاور ایران است.

Fig. 1. Distribution of Iranian bentonite deposits on a geological framework and the Momenn-Abad area is shown by a red square in the Eastern Iranian bentonite zone. Yellow oval: Eastern Iranian Bentonite Zone, green ovals: Central Iranian Bentonite Zone, blue ovals: Zagros Bentonite Zone, red ovals: Tefresh-Takab Bentonite Zone, purple ovals: Alborz-Azerbaijan Bentonite Zone, brown ovals: Semnan-Toroud Bentonite Zone (Tarabi et al., 2020b).
مواد و روش‌ها
پس از مطالعات صحرایی و شناسایی واحدهای معدن مؤمن آباد مربوط به وقفه 11/102021، به منظور مطالعات کانی‌شناسی و انجام آزمایش‌های جدید، به دست داشته شد. هدف از انجام آزمایش‌های جدید بوده است. به منظور انجام آزمایش‌های جدید، از دو کانی ترکیبی و دو کانی واگیری در شرکت گوهر پودر پارس، به منظور بررسی کانی‌شناسی مورد استخراج قرار گرفتند.

شکل 2- (a) نمای کلی از معدن مؤمن آباد، (b) دور نمایی از ترانشه استخراجی و (c) دور نمایی از ترانشه و محل دیوبه و جاقوه.

Fig. 2. (a) Overview of Momen-Abad mine, (b) Overview of the extractive trench, and (c) Overview of the trench and location of deposit and wells.

نتایج به‌دست آمده از تجزیه‌های XRD (برای بررسی اکسید)
کانی‌شناسی بینتونیت فاصله نسیمی از کاربرد آن دارد. با استفاده از ترکیبی و دو کانی واگیری در شرکت گوهر پودر پارس، به منظور بررسی کانی‌شناسی مورد استخراج قرار گرفتند. کانی‌شناسی بینتونیت فاصله نسیمی از کاربرد آن دارد. با استفاده از ترکیبی و دو کانی واگیری در شرکت گوهر پودر پارس، به منظور بررسی کانی‌شناسی مورد استخراج قرار گرفتند. کانی‌شناسی بینتونیت فاصله نسیمی از کاربرد آن دارد.

2011; Christidis and Huff, 2009; Gorniak et al., 2016, 2017

نتایج بینتونیت معدن مؤمن آباد
کانی‌شناسی بینتونیت نقل فکساری از کاربرد آن دارد. با استفاده از ترکیبی و دو کانی واگیری در شرکت گوهر پودر پارس، به منظور بررسی کانی‌شناسی مورد استخراج قرار گرفتند. کانی‌شناسی بینتونیت فاصله نسیمی از کاربرد آن دارد. با استفاده از ترکیبی و دو کانی واگیری در شرکت گوهر پودر پارس، به منظور بررسی کانی‌شناسی مورد استخراج قرار گرفتند. کانی‌شناسی بینتونیت فاصله نسیمی از کاربرد آن دارد. با استفاده از ترکیبی و دو کانی واگیری در شرکت گوهر پودر پارس، به منظور بررسی کانی‌شناسی مورد استخراج قرار گرفتند. کانی‌شناسی بینتونیت فاصله نسیمی از کاربرد آن دارد.

Grim and Güven 1978; Christidis and Dunham, 1997; Christidis,
مطالعات طیف سنجی اکسپرایدیاری الکترونی (SEM و طیف سنجی پرتو EDS/EDX)

ایکس پراکشن انرژی (EDX)

تصویربرداری الکترونی (SEM) بر روی یک نمونه کلوخه بنتونیتی انجام شده است. مطالعه این بنتونیت‌ها نشان می‌دهد این بنتونیت‌ها به همراه کوارتز (آپال کریستال)، حدود دارند. رس‌های اسمکتیتی با طراحت سه‌بعدی، کوارتز با طراحت دو بعدی، میکرولایت با طراحت سه‌بعدی، و رس‌های اسمکتیتی و کوارتز با طراحت دو بعدی می‌شوند.

نقطه نشان می‌دهد که در اندازه‌های مختلف شفافیت، کوارتز و کلسیت هستند که در نمونه‌های مختلف مشاهده می‌شوند. همچنین، پلاژیوکلاز و آلکالی فلدسپار به وسیله دامنه آ/3 و 01/3 و 12/2 در نمونه‌های شفافیتی و کوارتزی مشاهده می‌شوند. زئولیت از نوع هولاندیت و کلینوپتیولیت با درصد‌های کم در نمونه‌های شفافیتی و کوارتزی مشاهده می‌شوند.

پراکندگی اندازه دانه‌ها ناهمگن است و در اندازه‌های از 1 تا 10 میکرومتر مشاهده می‌شوند. فاز فرعی پلاژیوکلاز و آلکالی فلدسپار به وسیله دامنه 0.500 و 01/3 و 11/3 و 00/2 در نمونه‌های شفافیتی و کوارتزی مشاهده می‌شوند.

مطالعات طیف سنجی اکسپرایدیاری الکترونی (SEM) نشان می‌دهد که در اندازه‌های مختلف شفافیت، کوارتز و کلسیت هستند که در نمونه‌های مختلف مشاهده می‌شوند. همچنین، پلاژیوکلاز و آلکالی فلدسپار به وسیله دامنه آ/3 و 01/3 و 12/2 در نمونه‌های شفافیتی و کوارتزی مشاهده می‌شوند.

نقطه نشان می‌دهد که در اندازه‌های مختلف شفافیت، کوارتز و کلسیت هستند که در نمونه‌های مختلف مشاهده می‌شوند. همچنین، پلاژیوکلاز و آلکالی فلدسپار به وسیله دامنه 0.500 و 01/3 و 11/3 و 00/2 در نمونه‌های شفافیتی و کوارتزی مشاهده می‌شوند.

جدول 1- نتایج حاصل از پراکشن انرژی (XRD) نمونه‌های بنتونیت در محدوده دو منطقه کوه‌ای

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-05</td>
<td>Cristobalite + Smectite</td>
</tr>
<tr>
<td>B-87</td>
<td>Montmorillonite + Cristobalite</td>
</tr>
<tr>
<td>B-90</td>
<td>Cristobalite</td>
</tr>
</tbody>
</table>

شکل 2- نمودار نشان‌دهنده XRD نمونه‌های بنتونیت در محدوده دو منطقه کوه‌ای

شکل 3- نمودار نشان‌دهنده XRD نمونه‌های بنتونیت در محدوده دو منطقه کوه‌ای

کلاژن است. با بررسی پلاژیوکلاز و آلکالی فلدسپار به وسیله دامنه 0.500 و 01/3 و 11/3 و 00/2 در نمونه‌های شفافیتی و کوارتزی مشاهده می‌شوند.
Shemesh et al. 2012. SEM electron imaging, (a) Smectite clay with laminar morphology - rugged edges of spherical cristobalite, and (b) combination of smectite clay with poor laminate morphology and rough edges, laminated glass, and quartz.

Fig. 4. SEM electron imaging, (a) Smectite clay with laminar morphology - rugged edges of spherical cristobalite, and (b) combination of smectite clay with poor laminate morphology and rough edges, laminated glass, and quartz.

Shemesh et al. 2012. SEM-EDX electron and spectroscopy imaging of samples B05 and B07, (a) Quartz lepispher crystals that show somewhen clay mineral, with smectite lepispher crystals with magnification 20 μm, (b) Semi angular Smectiteand cristobalite lepispher crystals with magnification 10 μm, (c-d) Spherical to semicircular crystals and smectite sheet morphology with the morphology of cristobalite lepispher crystals, and (e) EDX spectroscopy graph on quartz and sodium smectite.

Fig. 5. SEM- EDX electron and spectroscopy imaging of samples B05 and B07, (a) Quartz lepispher crystals that show somewhen clay mineral, with smectite lepispher crystals with magnification 20 μm, (b) Semi angular Smectiteand cristobalite lepispher crystals with magnification 10 μm, (c-d) Spherical to semicircular crystals and smectite sheet morphology with the morphology of cristobalite lepispher crystals, and (e) EDX spectroscopy graph on quartz and sodium smectite.
مقدمه

ماده بنیوتنی در زون بنیوتنی خاور ایران و منطقه فرودس-سرایان تا سریع‌تره (حدود ۳۰ کیلومتری) دارد. با توجه به عالی‌مهم‌سازی جذب آب بنیوتنی‌ها در منطقه گلداسی به بالای ۴۰۰ و نوع سدیمی آنها به نظر می‌رسد که از هم سه‌حدود معدنی به ترتیب دو معدن دهشک و مومن آباد در این کاربرد در این پژوهش به مطالعه کانی نمونه از دپو و جذب آب بر روی آنها انجام شد. نتایج به این علت، نشان داده می‌شود که چاهک شماره ۱۱ در منطقه TR1 از جذب آب به سطحی بودن برداشت در منطقه چاهک شماره ۳۹ مربوط به همان منطقه می‌باشد. این نتایج نشان می‌دهد که بنیوتنی از نوع بنتونیت NQz-40 با شرایط سطحی مناسب برای صمت دهشک می‌باشد. در این بستر، نتایج قبل است. ظاهراً نیز در این منطقه، احتمال افزایش جذب آب می‌تواند بیشتر باشد.

نتیجه‌گیری

در این پژوهش به مطالعه گلداسی به ترتیب دو معدن دهشک و مومن آباد در این منطقه از منطقه‌ها. سرایان تا سریع‌تره به منظور پرسی کاربرد در صمت گلداسی‌های در پژوهش‌های اخیر نشان داده شده است. در این پژوهش، به مطالعه کانی NQz-40 با شرایط سطحی مناسب برای صمت دهشک می‌باشد.

جدول آب

نتایج بدست آمده از جذب آب در نمونه‌های اولیه مربوط به معدن مومن این منطقه به نمایش گذاشته می‌شود. در این پژوهش، ۶۴ نمونه از این منطقه مورد تعمیم دیگر جذب آب قرار گرفته است. این تجربه در جدول ۲ و شکل ۶ ارائه شده است. بر اساس نمودار شکل ۶، درصد جذب آب از این جریان تاناهای ای با مقدار حدود ۱۵٪ درصد جذب آب در این حوزه سه‌بلندی می‌باشد و به صورت نپردازی را نشان می‌دهد. این امر به جهت افزایش جذب آب در این منطقه مناسب ساختن گلداسی‌های سریع‌تره است.

جدول ۱: نتایج و عدد سنجی EDX

| جدول ۲: نتایج و عدد سنجی EDXspectroscopy at 12 points. |
|---|---|---|---|---|---|---|---|---|---|---|
| Kind | O | Na | Mg | Al | Si | Fe | K | Ca | Ti | Cl | Cu |
| B05- Spot 1 | Qz | 53.2 | 1.51 | 0.79 | 4.81 | 38.7 | 0.68 | 0.14 | 0.2 |
| B05- Spot 2 | Q+Clay | 45.9 | 1.56 | 1.84 | 8.33 | 36 | 1.65 | 2.43 | 0.5 | 1.2 | 0.7 |
| B05- Spot 3 | Qz | 50 | 1.40 | 0.77 | 4.54 | 41.8 | 0.26 | 0.28 | 0.6 |
| B05- Spot 4 | Qz | 52.2 | 1.10 | 0.70 | 2.31 | 43 | 0.42 | 0.26 |
| B05- Spot 1 | Na-Sme | 48.9 | 1.56 | 1.67 | 9.53 | 34.9 | 2.01 | 1.04 | 0.4 |
| B05- Spot 2 | Na-Sme | 51.6 | 1.40 | 1.86 | 9.3 | 33.5 | 2.13 | 0.91 | 0.2 |
| B05- Spot 1 | Na-Sme | 48.4 | 7 | 1.09 | 11 | 28.9 | 0.46 | 0.68 | 2.5 |
| B05- Spot 2 | Na-Sme | 47.7 | 1.60 | 1.41 | 6.79 | 39.5 | 103 | 1.06 | 0.5 |
| B05- Spot 3 | Na-Sme | 50.8 | 1.93 | 1.70 | 7.01 | 35.7 | 105 | 1.05 | 0.98 | 0.4 |
| B05- Spot 1 | Na-Sme | 49.4 | 1.62 | 1.50 | 7.47 | 35.9 | 1.59 | 2.02 | 0.3 | 0.2 |
| B05- Spot 3 | Na-Sme | 53.3 | 1.48 | 1.71 | 9.56 | 30 | 1.34 | 2.07 | 0.3 | 0.3 |
| B05- Spot 1 | Na-Sme | 47.4 | 1.07 | 0.99 | 5.64 | 42.4 | 0.8 | 1.23 | 0.5 |
جذب آب، نسبت به سایر معادن زون بنتونیتی خاور ایران، ویژگی شناسی و همچنین معدن دهشک بر اساس مطالعات

نتایج جذب آب نمونه‌های بنتونیتی با افزایش عمق به علت مسائل زمین‌شناسی و دریاچه‌های بنتونیتی با افزایش عمق 15 متری پس از کارزار سطح سرخه‌ده و مدیران طولانی از حفر تراشته، متوسط کل درصد جذب آب در ترانشه حدود 401 درصد را نشان می‌دهد. یکی از نکات اصلی اینکه جذب آب به بهترین کاربردی انجام شده است. این آزمون‌ها نشان می‌دهد که بنتونیت‌های معادن آباد مناسب به منظور جذب آب به منظور معدن مؤمن و سایر معادن به منظور مقایسه و معرفی بهترین پتانسیل کاربردی انجام گرفته است. این آزمون‌ها نشان می‌دهد که بنتونیت‌های معادن مؤمن و سایر معادن به منظور مقایسه و معرفی بهترین پتانسیل کاربردی انجام گرفته است. این آزمون‌ها نشان می‌دهد که بنتونیت‌های معادن مؤمن و سایر معادن به منظور مقایسه و معرفی بهترین پتانسیل کاربردی انجام گرفته است. این آزمون‌ها نشان می‌دهد که بنتونیت‌های معادن مؤمن و سایر معادن به منظور مقایسه و معرفی بهترین پتانسیل کاربردی انجام گرفته است.

جدول ۳: نتایج جذب آب ۸۶ نمونه از معادن مؤمن

<table>
<thead>
<tr>
<th>Row</th>
<th>Sample Number</th>
<th>Water Absorption</th>
<th>Row</th>
<th>Sample Number</th>
<th>Water Absorption</th>
<th>Row</th>
<th>Sample Number</th>
<th>Water Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TR1-1M</td>
<td>456</td>
<td>18</td>
<td>54M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TR1-2M</td>
<td>154</td>
<td>19</td>
<td>53M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TR1-3M</td>
<td>626</td>
<td>20</td>
<td>52M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TR1-4M</td>
<td>412</td>
<td>21</td>
<td>51M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TR1-5M</td>
<td>600</td>
<td>22</td>
<td>50M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TR1-6M</td>
<td>572</td>
<td>23</td>
<td>49M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TR1-7M</td>
<td>344</td>
<td>24</td>
<td>48M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TR1-8M</td>
<td>526</td>
<td>25</td>
<td>47M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TR1-9M</td>
<td>446</td>
<td>26</td>
<td>46M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TR1-10M</td>
<td>480</td>
<td>27</td>
<td>45M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TR1-11M</td>
<td>460</td>
<td>28</td>
<td>44M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TR1-12M</td>
<td>424</td>
<td>29</td>
<td>43M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TR1-13M</td>
<td>402</td>
<td>30</td>
<td>42M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TR1-14M</td>
<td>228</td>
<td>31</td>
<td>41M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TR1-15M</td>
<td>486</td>
<td>32</td>
<td>40M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>TR1-16M</td>
<td>250</td>
<td>33</td>
<td>39M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>TR1-17M</td>
<td>304</td>
<td>34</td>
<td>38M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TR1-18M</td>
<td>508</td>
<td>35</td>
<td>37M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TR1-19M</td>
<td>436</td>
<td>36</td>
<td>36M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TR1-20M</td>
<td>374</td>
<td>37</td>
<td>35M</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴: نتایج جذب آب ۱۸ نمونه از معادن مختلف

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Mine Name</th>
<th>Water Absorption</th>
<th>Sample Number</th>
<th>Mine Name</th>
<th>Water Absorption</th>
<th>Sample Number</th>
<th>Mine Name</th>
<th>Water Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>B139</td>
<td>Sanajan</td>
<td>108</td>
<td>B153</td>
<td>Gholer Gol Kon</td>
<td>228</td>
<td>B146</td>
<td>Shirazi</td>
<td>158</td>
</tr>
<tr>
<td>B140</td>
<td></td>
<td>182</td>
<td>B151</td>
<td>Deheshik</td>
<td>680</td>
<td>B147</td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>B141</td>
<td>Khosshali</td>
<td>78</td>
<td>B154</td>
<td>Tighab</td>
<td>148</td>
<td>B152</td>
<td>MortezaN ejad</td>
<td>190</td>
</tr>
<tr>
<td>B143</td>
<td></td>
<td>110</td>
<td>B156</td>
<td></td>
<td>94</td>
<td>B155</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>B149</td>
<td></td>
<td>126</td>
<td>B144</td>
<td>Ebrahimi</td>
<td>182</td>
<td>B148</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>B142</td>
<td>Gholer Gol Kon</td>
<td>324</td>
<td>B145</td>
<td>Momen Abad</td>
<td>198</td>
<td>B150</td>
<td></td>
<td>446</td>
</tr>
</tbody>
</table>
شکل ۶- نمودار درصد جذب آب نمونه‌ها در معدنمؤمن آباد.

Fig. 6. Diagram of water absorption percentages of Momen-Abad mine.

Tarabi, S., Emami, M.H., Modabberi. S., 2017. Study of diagenetic and hydrothermal alteration in stratigraphy section of Momen-abad (North- East of Sarbisheh, Birjand) and its role of them in non-metallic mineralization.4th YES Congress.

