زیست‌دسترس‌پذیری و زیست‌انباشت فلزات سنگین در سیستم رسوب-گیاه تالاب شادگان، استان خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شیراز

2 استاد گروه زمین شناسی زیست محیطی دانشگاه شیراز

3 استاد دانشگاه شیراز

چکیده

تالاب شادگان یکی از مهمترین و ارزشمندترین زیستگاه‌های آبی کشور است که از نظر زیست‌شناختی و بوم‌شناختی اهمیت زیادی در حیات‌وحش منطقه دارد. به منظور ارزیابی گونه‌های گیاهی به عنوان اندامگان نشانگر آلودگی فلزات سنگین در مطالعات زیست‌پایشی بوم‌سامانه آبی، در این پژوهش انباشت فلزات سنگین(مولیبدن، مس، سرب، روی، آرسنیک، سلنیم، جیوه، نیکل، کبالت، کادمیم، کروم، وانادیم، منگنز، آلومینیم و آهن) در ریشه و اندام هوایی ماکروفیت‌های نی(Phragmites australis)، لوئی(Typha latifolia)، چمن‌شور(Aeluropus lagopoides)، باتلاقی‌شور(Halocnemum strobilaceum) و جگن(Scripus maritimus) تعیین شد. غلظت‌ فلزات سنگین در ریشه‌ی هر پنج گونه از اندام‌هوایی بیشتر بود که بیانگر مناسب بودن این گونه‌ها به عنوان نشانگرهای حضور و میزان آلودگی فلزات سنگین در تالاب‌ها هستند. بیشترین مقدار ضریب زیست‌انباشت مربوط به عنصر سلنیم می‌باشد. همچنین غلظت سلنیم در گیاهان از رسوب بیشتر است. ضریب انتقال کمتر از یک برای تمام عناصر در گیاه نی نشان‌دهنده توانایی کم گونه گیاهی نی برای انتقال ‎عناصر از ریشه به اندام‌های هوایی است. طبق نتایج استخراج گزینشی سه عنصر سرب، نیکل و روی بیشترین زیست‌دسترس‌پذیری را دارند.

کلیدواژه‌ها


Acosta, J.A., Jansen, B., Kalbitz, K., Faz, A., Martínez-Martínez, S., 2011. Salinity increases mobility of heavy metals in soils. Chemosphere 85, 1318–1324.
Aksoy, A., Duman, F., Sezen, G., 2005. Heavy Metal Accumulation and Distribution in Narrow-Leaved Cattail (Typha angustifolia) and Common Reed (Phragmites australis). Journal of Freshwater Ecology 20, 783–785.
Baker, A.J.M., 1981. Accumulators and excluders ‐strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3, 643–654.
Baldantoni, D., Alfani, A., Di Tommasi, P., Bartoli, G., De Santo, A.V., 2004. Assessment of macro and microelement accumulation capability of two aquatic plants. Environmental Pollution 130, 149–156.
Bonanno, G., 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicology and Environmental Safety 74, 1057–1064.
Bonanno, G., Borg, J.A., Di Martino, V., 2017. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment. Science of the Total Environment 576, 796–806.
Bonanno, G., Lo Giudice, R., 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators 10, 639–645.
Bose, S., Vedamati, J., Rai, V., Ramanathan, A.L., 2008. Metal uptake and transport by Tyaha angustata L. grown on metal contaminated waste amended soil: An implication of phytoremediation. Geoderma 145, 136–142.
Brix, H., Schierup, H., 1989. The use of aquatic macrophytes in water-pollution control. Ambio. Stockholm.
Chaharlang, B.H., Bakhtiari, A.R., Mohammadi, J., Farshchi, P., 2016. Geochemical partitioning and pollution assessment of Ni and V as indicator of oil pollution in surface sediments from Shadegan wildlife refuge, Iran. Marine Pollution Bulletin 111, 247–259.
Dalenberg, J.W., Driel, W.V.A.N., 1990. Contribution of atmospheric deposition to heavy- metal concentrations in field crops. Netherlands Journal of Agricultural Scie  38, 369–379.
Davodi, M., Esmaili-Sari, A., Bahramifarr, N., 2011. Concentration of polychlorinated biphenyls and organochlorine pesticides in some edible fish species from the Shadegan Marshes (Iran). Ecotoxicology and Environmental Safety 74, 294–300.
El Azhari, A., Rhoujjati, A., El Hachimi, M.L., Ambrosi, J., 2017. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. Ecotoxicology and Environmental Safety 144, 464–474.
Guillen, M., Delgado, J., Albanese, S., Nieto, J., 2012. Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). Journal of Geochemical Exploration 119, 32-43.
Hang, X., Wang, H., Zhou, J., Du, C., Chen, X., 2009. Characteristics and accumulation of heavy metals in sediments originated from an electroplating plant. Journal of Hazardous Materials 163, 922–930.
Hendożko, E., Szefer, P., Warzocha, J., 2010. Heavy metals in Macoma balthica and extractable metals in sediments from the southern Baltic Sea. Ecotoxicology and Environmental Safety 73, 152–163.
Hornberger, M., Luoma, S., Geen, A. Van, Fuller, C., 1999. Historical trends of metals in the sediments of San Francisco Bay, California. Marine Chemistry 64(1-2), 39-55.
Hornung, R.W., Reed, L.D., 1990. Estimation of Average Concentration in the Presence of Nondetectable Values. Applied Occupational and Environmental Hygiene 5, 46–51.
Hosseini Alhashemi, A.S., Karbassi, A.R., Hassanzadeh Kiabi, B., Monavari, S.M., Nabavi, S.M.B., Sekhavatjou, M.S., 2011. Bioaccumulation of Trace Elements in Trophic Levels of Wetland Plants and Waterfowl Birds. Biological Trace Element Research 142, 500–516.
Kabata-Pendias, A. and Pendias, H., 2001. Trace elements in soils and plants–CRC Press. Boca Raton, p.403.
Kabata-Pendias, A. and Mukherjee, A.B., 2007. Trace elements from soil to human. Springer Science & Business Media.
Keshavarzi, B., Ebrahimi, P., Moore, F., Hamzeloo, M.A., 2013. Geochemistry and distribution of heavy metals in coastal and marine sediments of Chabahar Bay. Journal of Advanced Applied Geology 3, 74–81.
Koeppe, D.E., 1981. Lead: Understanding the Minimal Toxicity of Lead in Plants, in: Effect of Heavy Metal Pollution on Plants. Springer Netherlands, Dordrecht, pp. 55–76.
Li, H., Qian, X., Hu, W., Wang, Y., Gao, H., 2013. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Science of the Total Environment 456, 212-221.
Maanan, Mohamed, Saddik, M., Maanan, Mehdi, Chaibi, M., Assobhei, O., Zourarah, B., 2015. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators 48, 616–626.
Mazej, Z., Germ, M., 2009. Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74, 642–647.
Nasirian, H., Irvine, K.N., Sadeghi, S.M.T., Mahvi, A.H., Nazmara, S., 2016. Assessment of bed sediment metal contamination in the Shadegan and Hawr Al Azim wetlands, Iran. Environmental Monitoring and Assessment 188, 107.
Nasirian, H., Mahvi, A.H., Hosseini, M., Vazirianzadeh, B., Sadeghi, S.M.T., Nazmara, S., 2013. Study on the heavy metal bioconcentrations of the Shadegan international wetland mosquitofish, Gambusia affinis, by inductively coupled plasma technique. Journal of environmental health science & engineering 11, 22.
Pérez-López, R., Álvarez-Valero, A.M., Nieto, J.M., Sáez, R., Matos, J.X., 2008. Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt). Applied Geochemistry 23, 3452–3463.
Phillips, D.P., Human, L.R.D., Adams, J.B., 2015. Wetland plants as indicators of heavy metal contamination. Marine Pollution Bulletin 92, 227–232.
Rahimi-Baloochi, L., Zarkar, A., MalekMohammadi, B., 2015. Detecting Environmental Changes Using Remote Sensing and WRASTIC Index (Case Study: Shadegan International Wetland), Journal of RS and GIS for Natural Resources, 5, 61-73.
Ramachandra, T.V., Sudarshan, P.B., Mahesh, M.K., Vinay, S., 2018. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. Journal of Environmental Management 206, 1204–1210.
Ryan, J., Estefan, G., Rashid, A., 2007. Soil and Plant Analysis Laboratory Manual - ICARDA.
Shadegan Wetland Management Plan, 2011. Conservation of Iranian Wetlands in collaboration Governmental organizations, NGOs and Local Communities of Shadegan Wetland.
Soltani, N., Keshavarzi, B., Moore, F., Sorooshian, A., Ahmadi, M.R., 2017. Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E-Gohar iron mine, a case study in Iran. Environmental Science and Pollution Research 24, 18798–18816.
Steiner, F., Zoz, T., 2015. Foliar application of molybdenum improves nitrogen uptake and yield of sunflower 10, 1923–1928.
Storelli, M., Storelli, A., Daddabbo, R., Marano, C., 2005. Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: overview and evaluation. Environmental pollution 135(1), 163-170.
Taghinia Hejabi, A., Basavarajappa, H.T., Karbassi, A.R., Monavari, S.M., 2011. Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environmental Monitoring and Assessment 182, 1–13.
Weis, J.S., Weis, P., 2004. Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environment International 30(5), 685-700.
Yavar Ashayeri, N., Keshavarzi, B., Moore, F., Kersten, M., Yazdi, M., Lahijanzadeh, A.R., 2018. Presence of polycyclic aromatic hydrocarbons in sediments and surface water from Shadegan wetland – Iran: A focus on source apportionment, human and ecological risk assessment and Sediment-Water Exchange. Ecotoxicology and Environmental Safety 148, 1054–1066.
Zhang, H., Cui, B., Xiao, R., Zhao, H., 2010. Heavy metals in water, soils and plants in riparian wetlands in the Pearl River Estuary, South China. Procedia Environmental Sciences 2, 1344–1354.