ارزیابی تأثیر چرخه‌های انجماد-ذوب بر روی سرعت امواج فشاری و چگالی سنگ شیست (مطالعه موردی: معدن انگوران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی معدن، دانشکده فنی‌مهندسی، دانشگاه شهید باهنر کرمان

2 دانشکده مهندسی معدن و متالوژی، دانشگاه صنعتی امیرکبیر

3 گروه مهندسی معدن، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

چکیده

در این تحقیق تأثیر چرخه‌های مختلف انجماد-ذوب بر سرعت امواج فشاری و چگالی سنگ شیست بررسی شده است. بدین منظور، ابتدا 13 عدد گمانه در معدن انگوران حفاری و تعداد 25 نمونه استوانه‌ای آماده سازی گردید. سپس، نمونه‌ها در آزمایشگاه با استفاده از فرآیند انجماد-ذوب هوازده و پارامترهای سرعت امواج فشاری و چگالی خشک نمونه‌ها در چرخه‌های 0، 7، 15، 40 و 75 اندازه‌گیری گردید. تحلیل نتایج نشان‌دهنده کاهش نمایی سرعت امواج فشاری (50% کاهش) و چگالی خشک (20% کاهش) به‌ازای افزایش تعداد چرخه‌های انجماد-ذوب می‌باشد. همچنین، سرعت امواج فشاری با افزایش چگالی خشک به‌صورت نمایی افزایش می‌یابد. با برازش نتایج حاصله، دو رابطه تجربی مجزا جهت محاسبه سرعت موج فشاری و چگالی خشک در سنگ شیست به‌ازای چرخه‌های مختلف انجماد-ذوب و یک رابطه هم بین سرعت موج فشاری و چگالی خشک ارائه شده است. بعلاوه، بافت نمونه‌ها هم در حالت بکر و هم پس از اعمال 75 چرخه انجماد-ذوب به‌وسیله میکروسکوپ الکترونیکی مورد مطالعه قرار گرفته است. نتایج حاصله نشان دهنده متراکم بودن بافت نمونه‌ها قبل از هوازدگی و افزایش فاصله بین ناپیوستگی‌ها بعد از هوازدگی می باشد. در نهایت، نتایج اعتبارسنجی نشان داد که همخوانی خوبی بین خروجی حاصل از تحقیق حاضر و مطالعات قبلی وجود دارد.

کلیدواژه‌ها


Babuška, V., 1968. Elastic anisotropy of igneous and metamorphic rocks. Studia Geophysica et Geodaetica 12 (3), pp. 291.
Barton, M., Hamilton, D.L., 1978. Water-saturated melting relations to 5 kilobars of three Leucite Hills lavas. Contributions to Mineralogy and Petrology 66 (1), 41-49.
Borhani, A., Lashkaripoor, Gh., Ghafouri, M., 2015. Investigation of physical and mechanical properties of the schists in the South of Mashhad, Second National Conference on Geology and Exploration Resources, Shiraz.
Çelik, M.Y., 2017. Water absorption and P-wave velocity changes during freeze–thaw weathering process of crosscut travertine rocks. Environmental Earth Sciences 76, 409, doi: 10.1007/s12665-017-6632-7.
Chen, J., Xu, Z., Yu, Y., Yao, Y., 2014. Experimental characterization of granite damage using nonlinear ultrasonic techniques. NDT & E International 67, 10-16.
Chen, T.C., Yeung, M.R., Mori, N., 2004. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action. Cold Regions Science and Technology 38 (2-3), 127-136.
Ding, Q.L., Song, S.B., 2016. Experimental investigation of the relationship between the P-wave velocity and the mechanical properties of damaged sandstone. Advances in Materials Science and Engineering, do: 10.1155/2016/7654234.
Domenico, S.N., 1984. Rock lithology and porosity determination from shear and compressional wave velocity. Geophysics 49 (8), 1188-1195.
Draebing, D., Krautblatter, M., 2012. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model. The Cryosphere 6, (5), 1163-1174.
Dreesen, R., Dusar, M., 2004. Historical building stones in the province of Limburg (NE Belgium): Role of petrography in provenance and durability assessment. Materials Characterization 53 (2-4), 273-287.
El-Gohary, M. A., 2013. Evaluation of treated and un-treated Nubia Sandstone using ultrasonic as a non-destructive technique. Journal of Archaeological Science 40 (4), 2190-2195.
Fahimifar, A., Soroush, H., 2001. Rock Mechanics Experiments, Theoretical Foundations and Standards Volume I, Technical Lab Joint Stock Company and soil mechanics, Amirkabir University of Technology.
Fahimifar, A., Soroush, H., 2003. Rock Mechanics Experiments - Theoretical Foundations and Standards Volume II Field tests, Amirkabir University of Technology Publishing Center.
Fener, M., Ince, I., 2015. Effects of the freeze–thaw (F–T) cycle on the andesitic rocks (Sille-Konya/Turkey) used in construction building. Journal of African Earth Sciences 109, 96-106.
Freire-Lista, D.M., Fort, R., Varas-Muriel, M.J., 2015. Freeze–thaw fracturing in building granites. Cold Regions Science and Technology 113, 40-51.
Ghobadi, M.H., Babazadeh, R., 2015. Experimental studies on the effects of cyclic freezing–thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones. Rock Mechanics and Rock Engineering 48(3), 1001-1016.
Grossi, C.M., Brimblecombe, P., Harris, I., 2007. Predicting long term freeze–thaw risks on Europe built heritage and archaeological sites in a changing climate. Science of the Total Environment 377(2-3), 273-281.
Han, D.H., Nur, A., Morgan, D., 1986. Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51 (11), 2093-2107.
Inigo, A.C., Vicente, M.A., Rives, V., 2000. Weathering and decay of granitic rocks: its relation to their pore network. Mechanics of Materials 32 (9), 555-560.
Jamshidi, A., Nikudel, M.R., Khamehchiyan, M., 2016. Evaluation of the durability of Gerdoee travertine after freeze–thaw cycles in fresh water and sodium sulfate solution by decay function models. Engineering Geology 202, 36-43.
Khanlari, G., Abdilor, Y., 2015. Influence of wet–dry, freeze–thaw, and heat–cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran. Bulletin of Engineering Geology and the Environment 74(4), 1287-1300.
Khanlori, Gh., Momeni, A., Abdi, Y., 2010. Engineering Geology and Geotechnics, Pablication of university of Bu Ali Sina, Hamedan.
Kurtuluş, C., Sertçelik, F., Sertçelik, I., 2016. Correlating physico-mechanical properties of intact rocks with P-wave velocity. Acta Geodaetica et Geophysica 51 (3), 571-582.
Mahmoud, A.M., Ammar, H.H., Mukdadi, O.M., Ray, I., Imani, F.S., Chen, A., Davalos, J.F., 2010. Non-destructive ultrasonic evaluation of CFRP–concrete specimens subjected to accelerated aging conditions. Ndt & E International 43, (7), 635-641.
Mamillan, M., 1979. Méthodes d’essais au gel des pierres, Problems Raised by Frost Action. In 6th international congress   of the fondation française d’Etudes Nordiques, Le Havre, p. 225-238.
Özbek, A., 2014. Investigation of the effects of wetting–drying and freezing–thawing cycles on some physical and mechanical properties of selected ignimbrites. Bulletin of Engineering Geology and the Environment 73(2), 595-609.
Özgan, E., 2007. Determining the stability of asphalt concrete at varying temperature and exposure times using destructive and non-destructive methods. Journal of Applied Sciences 7(24), 3870-3879.
Özgan, E., Serin, S., Ertürk, S., Vural, I., 2015. Effects of freezing and thawing cycles on the engineering properties of soils. Soil Mechanics and Foundation Engineering 52(2), 95-99.
Park, J., Hyun, C.U., Park, H.D., 2015. Changes in microstructure and physical properties of rocks caused by artificial freeze–thaw action. Bulletin of Engineering Geology and the Environment 74(2), 555-565.
Ruedrich, J., Kirchner, D., Siegesmund, S., 2011. Physical weathering of building stones induced by freeze–thaw action: A laboratory long-term study. Environmental Earth Sciences 63(7-8), 1573-1586.
Sousa, L.M., del Río, L.M.S., Calleja, L., de Argandona, V.G.R., Rey, A.R., 2005. Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Engineering Geology 77(1-2), 153-168.
Spetzler, H., Anderson, D.L., 1968. The effect of temperature and partial melting on velocity and attenuation in a simple binary system. Journal of Geophysical Research 73(18), 6051-6060.
Standard, A.S.T.M., 2008. Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. ASTM International, West Conshohocken.
Tan, X., Chen, W., Yang, J., Cao, J., 2011. Laboratory investigations on the mechanical properties degradation of granite under freeze–thaw cycles. Cold Regions Science and Technology 68(3), 130-138.
Wang, P., Xu, J. Y., Liu, S., 2015. Ultrasonic method to evaluate the residual properties of thermally damaged sandstone based on time–frequency analysis. Nondestructive Testing and Evaluation 30(1), 74-88.
Wang, P., Xu, J., Fang, X., Wang, P., Zheng, G., Wen, M., 2017. Ultrasonic time-frequency method to evaluate the deterioration properties of rock suffered from freeze-thaw weathering. Cold Regions Science and Technology 143, 13-22.
Wang, P., Xu, J., Liu, S., Liu, S., Wang, H., 2016. A prediction model for the dynamic mechanical degradation of sedimentary rock after a long-term freeze-thaw weathering: Considering the strain-rate effect. Cold Regions Science and Technology 131, 16-23.
Yasar, E., Erdogan, Y., 2004. Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences 41(5), 871-875.
Zhang, S., Lai, Y., Zhang, X., Pu, Y., Yu, W., 2004. Study on the damage propagation of surrounding rock from a cold-region tunnel under freeze–thaw cycle condition. Tunnelling and Underground Space Technology 19(3), 295-3.