خاستگاه کانسار آهن چغارت، ایران مرکزی: کاربردی از زمین‌شیمی میانبارهای سیال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم زمین، دانشگاه شیراز، شیراز، ایران

2 دانشکده علوم زمین، دانشگاه دامغان، دامغان، ایران

چکیده

کانسار آهن چغارت در زون ایران مرکزی و 12 کیلومتری شمال شرق بافق، 130 کیلومتری جنوب شرق شهرستان یزد واقع شده است. سنگ میزبان غالب در این منطقه شامل مجموعه‌ای از نفوذی‌های آذرین حد واسط تا اسیدی و دایک‌های مافیک است که در برخی از بخش‌ها به شدت دگرسان شده‌اند و به متاسوماتیت معروف‌اند. این سنگ‌های آذرین در برخی نقاط تا حد رخساره شیست سبز دگرگون شده‌اند. مگنتیت فراوانترین کانسنگ اکسیدی منطقه است که به شکل‌های لایه‌ای، توده‌ای و افشان در سنگ میزبان کانسار چغارت حضور دارد. کانه‌زایی اصلی کانسار در سازندهای پرکامبرین پسین و به شکل پر عیار (مگنتیت + آپاتیت+ آمفیبول) رُخ داده است. داده های حاصل از مطالعه میانبارهای سیال در آپاتیت همزاد با مگنتیت نشان می دهد که کان توده آهن چغارت در محدوده‌ی دمایی 370 تا 385 درجه‌ی سانتی گراد تشکیل شده است. بیشترین نرخ شوری بین 20 تا 39 درصد وزنی معادل نمک طعام تشخیص داده شد. شواهد صحرایی و ریزدماسنجی میانبارهای سیال در کانی آپاتیت‌‌ کانسار چغارت نشان می‌دهد که سیال کانسنگ ساز بسیار شبیه به ذخایر ماگمایی- گرمابی طلا- مس- اکسید آهن (IOCG) است.

کلیدواژه‌ها


Alavi, M., 1994. Tectonic of Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–238.
Audetat, A., Guenther, D., Heinrich, C.A., 1998. Formation of a magmatic-hydrothermal ore deposit; insights with LA-ICP-MS analysis of fluid inclusions. Science 279, 2091–2094.
Barton, M. D., Johnson, D. A., 2004. Footprints of Fe Oxide (-Cu-Au) Systems. Special Publication, University of Western Australia, Crawley, Australia.
Beane, R.E., 1981. The magmatic-meteoric transition. Geothermal Resources Council 13, 245–253.
Berberian, M., King, G. C. P., 1981. Towards a paleogeography and tectonic evolution of Iran, Canadian journal of Earth Science 18, 210-265.
Bodbar, R.j., Reynolds, T.J., Kuehn, C.A., 1985. Fluid inclusion systematics in epithermal in systems Reveiws of Economic Geology 2, 73-97.
Bodnary, R.H., Vityk, M.O., 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusion, in De Vivo, B., and Frezootti, M.L., eds., Fluid inclusion in minerals: Methods and applications: International mineralogical association, Short course of the working group, Inclusions in minerals 117-130.
Charlier, B., Namur, O., Bolle, O., Latypov, R., Duchesne J., 2015. Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth-Science Reviews 141, 56–81.
Corriveau, k., 2007. Auditory Processing Skills and Specific Language Impairment: A new look at an old hypothesis. Journal of Speech, Language, and Hearing Research 50, 647–666.
Darvishzadeh, A., 1983. Investigation of Bafg-Esfordi phosphate, Journal of Sciences, Tehran University, 13(1-2) 2-24 (in Persian).
Ebrahimi, F., Mokhtari, M., 2015. Vibration analysis of spinning exponentially functionally graded Timoshenko beams based on differential transform method. Journal of Aerospace Engineering 229, 1–13.
Eslamizadeh, A., 2016. Geological setting of iron oxide-apatite deposits in the Bafq‎ district, central Iran with an emphasis on mineralogical, petrographic, and geochemical study of the Sechahun deposit. Iranian Journal of Earth Sciences 8, 147-163.
Foerster, H., Jafarzadeh, A., 1994. The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic fie. Economic Geology 89 (8), 1697-1721.
Grandia F., Cardellach E., Canals A., Banks D.A., 2003. Geochemistry of the fluids related to epigenetic carbonate-hosted zn-pb deposits in the Maestrat basin, Eastern Spain: fluid inclusion and isotope (Cl, C, O, S, Sr) evidence. Economic Geology 98, 933–954.
Guilbert, J. M., Park, J. R. C. F., 1997. The geology of ore deposits, Freaman and company, New York, 985.
Haghipour, A., 1974. Etude geologique la region de Biabanak - Bafq (Centeral Iran); Petrologie et tectonique du socle percamberien et sacouverture. Ph. D These, Universite Scientifique et Medicale de Grenobal, France.
Hitzman, M. W., Oreskes, N., 1992. Einaudi M. T., Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambrian Researchs 58, 241–287.
Hitzman, M.W., 2000. Iron oxide–Cu–Au deposits: what, where, when and why. In: Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper–Gold and Related Deposits: A Global Perspective 2, Adelaide. Australian Mineral Foundation 9–25.
Karimpour, M. H, Mazloomi, A, 1997. Geochemistry, Origin and Potential of Gold Mining in Exploration Zone of Torbat Heydariyeh koh zar. Journal of Earth Sciences 28-27, 13-2.
Karimpour, M. H, Mazloomi, A., 1997. Gold Discovery Report in the Torbat-e-Heydariyeh koh zar Area, Zarmahar Gold Company Internal Report 31.  
Karimpour, M. H., 2005. Comparison of Cu-Ag-Au Ghale zary deposit with other Iron Oxides Cu-Au (IOCG) deposits and presenting new classification, crystallography and mineralogy of Iran 134-1677.
Latifi Saei, F., Mirnejad, H., Alipour Asl, M., Niroumand, S., 2014. Investigation of gold mineralization in thousands of vein systems in the Paris region of Kerman province (with emphasis on studies of fluid shortages and sulfur isotopes. Applied Geology Advanced 14, 65-75.
Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews 7, 25-41.
Malekzadeh Shafaroodi, A., Karimpour, M. H., 2012. Geology, Mineralization and Fluid inclusions Studies of Pb-Zn-Cu Hoze Reis Deposition, East Iran. Advanced Applied Geology 6, 63 – 73.
Moore, F., Modabberi, S., 2003. Origin of Choghart iron oxide deposit, Bafq mining district, Central Iran: new isotopic and geochemical evidence. Journal of Science, Islamic Republic of Iran 14, 259-269.
Nystrom, J. O., Henriquwz, F., 1994. Magmatic features of iron ore of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry. Economic Geology 89, 820-839.
Paknejad, H., 1991. Complementary exploration of Esfordi deposit. Geological Survey of Iran, Tehran, Report 11, 89 (in Persian).
Rahimi, A., 2015. Geochemical and Economic Geological Survey of Rare Elements in the Lake siysh Iron-Apatite Deposition, Northeast Bafgh. M.Sc Thesis, Amirkabir University of Technology, Tehran, Iran.
Ramdohr, P., 1980. The Ore Minerals and their Intergrowths, Pergamon Press, New York, N.Y.
Rasti, S., Rajabzadeh M. A., 2017. Mineralogical and Geochemical Characteristics of Serpentinite-Derived Ni-Bearing Laterites from Fars Province, Iran: Implications for the Lateritization Process and Classification of Ni-Laterites World Academy of Science, Engineering and Technology. International Journal of Geological and Environmental Engineering 117.
Roberts, D. E., Hudson, G. R. T., 1983. The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia. Economic Geology 78 (5), 799-822.
Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy, 12 644p
Samani, B.A., 1988. Metallogeny of the Precambrian in Iran. Precambrian Research 39, 85-106.
Shepherd, T., Rankin, A. H., Alderton, D., 1985. A practical guide to fluid inclusions studies, Blackie, Glasgow, 239.
Sillitoe, R.M., 2003. Iron oxide-copper-gold deposits: an Andean view. Mineralium Deposita 38, 787–812.
Simmons, S.F., Simpson, M.P. Mauk, J., 2000.The mineral products of boiling in the golden cross epithermal deposit, New Zealand Minerals and Mining Conference Proceedings, 209-216.
Stocklin, J., 1974. Possible ancient continental margins in Iran. In the geology of continental margins. Edited by C.A Burk and C.L. Drake. Springer, New York, 333-353.
Van den Kerkhof, A.M., Hein, U.F., 2001. Fluid inclusion petrography. Lithos 55, 1-4.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposit. Lithos 55, 229–72.
Yao, Y., Murphy, P.J., Robb, L.J., 2001. Fluid characteristics of granitoid-hosted gold deposits in the birimianterrane of Ghana: a fluid inclusion microthermometric and Raman spectroscopic study. Economic Geology 96, 1611–43.
Zhang, Y. G., Frantz, J. D., 1987. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chemical Geology 64, 335-350.